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Volume Phase Transitions in Surface-Tethered, Photo-Cross-Linked 

Poly(N-isopropylacrylamide) Networks 

Ajay Kumar Vidyasagar 

ABSTRACT 

The overall thrust of this dissertation is to gain a comprehensive understanding over the 

factors that govern the performance and behavior of ultra-thin, cross-linked polymer 

films. Poly(NIPAAm) was used as a model polymer to study volume phase transition in 

surface tethered networks. 

 

Poly(NIPAAm) undergoes a reversible phase transition at approximately 32oC between a 

swollen hydrophilic random coil to a collapsed hydrophobic globule state, thought to be 

caused by increased hydrophobic attractions between the isopropyl groups at elevated 

temperatures. We present a simple photochemical technique for fabricating structured 

polymer networks, enabling the construction of responsive surfaces with unique 

properties. The approach is based on the photo-cross-linking of copolymers synthesized 

from N-isopropylacrylamide and methacroyloxybenzophenone (MaBP). In order 

correlate layer swelling to the MaBP content, we have studied the swelling behavior of 

such layers in contact with aqueous solutions with neutron reflection. 

 

The cross-linked networks provide a three-dimensional scaffold to host a variety of 

functionalities. These networks serve as a platform which can be used to amplify small 

local perturbations induced by various stimuli like temperature, pH, solvent, ionic 

strength and peptide modified hydrogels to bring about a macroscopic change. Neutron 
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reflection experiments have shown that the volume-phase transition of a surface-

tethered, cross-linked poly(NIPAAm) network coincided with the two-phase region of 

uncross-linked poly(NIPAAm) in solution. Parallel measurements with ATR-FTIR 

investigating the effect of temperature, pH and salts suggest that the discontinuous 

transition is the result of cooperative dehydration of the isopropyl groups, with water 

remaining confined between amide groups in the collapsed state as weakly hydrogen 

bonded bridges. Hybrid polymers with specific peptide sequences have shown specific 

response to external cues such as pH and metal ions exhibiting unique phase behavior. 

 
. 
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INTRODUCTION 

Temperature-responsive polymers have gained significant importance for their ability to 

undergo drastic changes in their structure in response to external stimuli in aqueous 

media.[1-5] They have been studied extensively in applications such as drug delivery,[6-

8] cell and bacterial attachment.[9-10] and separation processes.[11] One of the most 

studied temperature responsive polymer is poly(N-isopropylacrylamide) (poly(NIPAAm)). 

Poly(NIPAAm) undergoes a hydrophilic/hydrophobic transition at a  lower critical solution 

temperature (LCST) of roughly 32oC. At this temperature the polymer reversibly switches 

from a fully soluble, hydrophilic random coil at lower temperatures to an insoluble 

globule at higher temperatures.[12-14] 

 

This transition has been attributed to changes in the hydrogen bonding tendency of 

water. Water molecules form ordered structures around both the hydrophilic amide 

moieties of NIPAAm and the hydrophobic isopropyl groups to maximize favorable 

hydrogen bonding associations. As temperature is increased, hydrogen bonding 

interactions grow weaker until the LCST is reached, wherein hydrophobic attractions 

between isopropyl groups dominate and collapse the polymer structure.[15-19] As the 

polymer goes through the hydrophilic/hydrophobic transition, Schild and co-workers 

showed that the intermolecular collapse of the polymer chains precedes intermolecular 

aggregation.[14] Moreover, the collapse of single polymer chains increases the 

scattering of light, which is known as the cloud point. The water that is removed and the 

phase separation of the collapsed polymeric molecules follow this cloud point. Chapter 1 

and 2 discuss the general background and the polymer synthesis strategies and 
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characterizing techniques used to investigate swelling behavior and chemical 

interactions in responsive polymers in detail. 

 

I have focused my attention on the effects of surface-attachment of poly(NIPAAm) 

networks to quartz and silica substrates. We are interested in surface attached networks 

of temperature polymers as a means to control surface properties in microfluidic devices. 

For instance, above the transition temperature, the networks can bind and hold proteins 

and cells. Below the transition, the networks repel proteins and cells. These networks 

thus offer potential as self-cleaning surfaces, as platforms for reversible diagnostics and 

as a means to separate biological material. That being said, confinement of a polymer 

alters its ability to swell compared to bulk polymers. However, there is limited 

understanding as to how surface attachment of a polymer chain can influence its volume 

transition behavior. Changes in the phase transition behavior in bulk polymers do not 

translate to those observed in surface attached networks which show swelling 

characteristics that are significantly different from unconstrained network as, shown by 

Harmon and coworkers.[20-21] 

 

My hypothesis is that the nature of the volume-phase transition depends both on the 

chemical constituency as well as structural topology of the polymer. However, there 

have been few studies addressing these areas. We have designed poly(NIPAAm-MaBP) 

networks that will serve as model systems to probe relationships between surface 

confinement and intramolecular interactions with respect to volume-phase behavior. The 

volume phase transition of the polymers was characterized with neutron reflection and 

ellipsometry, allowing construction of volume-phase diagrams. The phase diagrams 

were interpreted with respect to a modified one dimensional swelling Flory-Rehner 

model.  
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Chapter 3 presents results using neutron reflection showing that the volume-phase 

transition of a surface-tethered, cross-linked poly(NIPAAm) network coincided with the 

two-phase region of uncross-linked poly(NIPAAm) in solution. This finding implies that 

cross-linking does not affect the miscibility gap of poly(NIPAAm). In uncross-linked 

systems, the extent of dilution can be arbitrarily controlled; and therefore, any part of the 

phase diagram can be accessed. Cross-linked systems, on the other hand, constrain the 

extent of dilution, and consequently a cross-linked system may or may not interfere with 

the two phase region of the phase diagram. For instance, if the cross-link density is 

sufficiently high, the network is prohibited from entering the miscibility gap, and therefore 

will move from a swollen to a less swollen state in a more or less continuous manner. 

Neutron reflection revealed that water is expelled discontinuously at low crosslink 

densities and continuously at high crosslink densities. The demarcation between the two 

behaviors occurred roughly at the critical point as measured by cloud point experiments. 

 

Chapter 4 discusses neutron reflection experiments further revealing that the 

discontinuous concentration jump at low crosslink densities takes place in the presence 

of significant amounts of water and that water is not completely expelled in the process, 

with 2-3 water molecules remaining after the collapse of the network, independent of 

crosslink density. Parallel measurements with ATR-FTIR suggest that the discontinuous 

transition is the result of cooperative dehydration of the isopropyl groups, with water 

remaining confined between amide groups in the collapsed state as weakly hydrogen 

bonded bridges.[1, 2] Experiments involving D2O-H2O substitution on poly(NIPAAm-

MaBP) networks have shown the existence of water trapped in hydrophobic domains in 

the collapsed networks which are able to diffuse in and out of the networks as indicated 

by D2O substitution at temperatures as high as 102oC. 
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The demixing behavior of poly(NIPAAm) is known to perturbed by the addition of co-

solutes like Hofmeister series of salts.[3] The change in demixing temperature due to the 

salts is not purely concentration dependent. The change in magnitude of the demixing 

temperature is greatly affected by the nature of cosolute added and usually follows the 

Hofmeister series of salts.[3-5] It has been suggested that that salt, interacts with 

poly(NIPAAm) in 3 different mechanisms.[4-6] Firstly, the anions can polarize the water 

molecules that are hydrogen bonded to poly(NIPAAm). Secondly, the anions can interact 

with the hydrophobic hydration increasing the surface tension at the polymer/aqueous 

interface. Thirdly, the anions can directly bind with the amide groups of 

poly(NIPAAm).[4-6] We have shown that the primary interaction of salts with 

poly(NIPAAm) is through a direct interaction with the amide moieties which follows the 

Hofmeister series. 

 

 Chapter 5 focuses on using neutron reflection and ellipsometry to derive average water 

distribution and swelling characteristics of the surface confined poly(NIPAAm) coating. 

ATR-FTIR was used to study the molecular interactions between cosolute, 

poly(NIPAAm) and water. Previous results as discussed in chapter 3 have shown the 

presence of 2-3 water molecules per polymer segment corresponding to 30-35% of 

water that seems to be trapped even in the collapsed state.[1] The addition of a strong 

salting out salt like Na2SO4 seems to precipitate the polymer even at concentrations as 

low as 0.1M Na2SO4. The addition of salts forms a secondary driving force for the 

expulsion of water molecules from the collapsed polymer coatings resulting in only 15-

20% of water left in the collapsed networks. Evidence of a direct interaction of salts with 

the amide moieties is presented. It is seen that the Hofmeister salts do not influence the 

hydrophobic hydration around the isopropyl groups as indicated by a linear increase in 
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surface tension due to the binding of anions to the amide moieties which follows the 

Hofmeister series. 

 

Another interesting area of research is to combine synthetic polymers with peptides and 

other bio-molecules to form hybrid polymers. These polymers exhibit the functionality of 

peptides and also have the synthetic versatility and adaptability of synthetic polymers, 

effectively harnessing the best of both worlds. Recently, embedding specific peptide 

sequences have aided in better understanding in the nature of stimuli responsiveness in 

smart materials.[7] Peptides can undergo conformational changes due to changes in 

temperature, pH and specific binding behavior. Protein or peptide based hydrogels 

containing protein domains may self-assemble from block or graft copolymers containing 

biorecognition domains. Stimuli-responsive peptides can also be coupled with synthetic 

polymers to create stimuli-sensitive hybrid systems.[7-10] Our ultimate motivation was to 

engineer surface tethered poly(NIPAAm) coatings with peptide sequences that respond 

to specific environmental cues. 

 

Chapter 6 discuses synthesis strategies to design peptide embedded poly(NIPAAm) 

based hydrogels using  a modified Fmoc solid phase peptide synthesis method to create 

hybrid polymer architectures. We use NIPAAm copolymerized with N-(3-

Aminopropyl)methacrylamide hydrochloride which has a pendent free amine group. This 

formed the starting resin to which target peptide sequences were engineered by adding 

one amino acid at a time. Though, short of our ultimate goal to create surface tethered 

peptide-polymer conjugates, I have demonstrated a simple and robust technique to 

embed peptide sequences in to poly(NIPAAm) hydrogels. Using this simple synthesis 

route, we have engineered a highly pH sensitive poly(NIPAAm) hydrogel with GEGVP a 

pentapeptide construct. We have also engineered poly(NIPAAm)-GGH constructs which 
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have an affinity to heavy metal ions like copper, nickel and zinc forming a very effective 

biosensor. 
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1 CHAPTER 1: BACKGROUND AND MOTIVATION 
1.1 Hydrogels 

Hydrogels are three dimensional polymeric structures that swell in aqueous solutions as 

shown in figure 1.1. They can swell several times their initial dry size depending strongly 

on the degree of cross-link density. Based on the method of cross-linking, hydrogels can 

be classified as physical and chemical cross-linked hydrogels. 

 

 

 

.Figure 1.1 Swelling of hydrogel in water 
 

1.1.1 Physically Cross-Linked Hydrogels 

Hydrogels are said to be physically cross-linked when the cross-linking is achieved by 

hydrogen bonds, coulombic forces or coordinate bonds with no chemical cross-linking 

agents. This type of polymer gelation is called sol-gel transition.  
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Being biodegradable, physical gels find applications mainly in drug delivery,[11, 12] and 

protein encapsulation [11, 12]. The lack of chemical cross-links help in the disintegration 

of the hydrogels and bringing about better release rates for the encapsulated drug. 

Alginate hydrogels are prime examples for protein encapsulation and delivery.[13] The 

physical cross-links do not require any harsh solvents that may inhibit protein activity. 

Moreover, anionic hydrogels formed with alginate and calcium chloride results in making 

the hydrogels reversible and aids in the rapid degradation of the hydrogels in the 

presence of chelating or monovalent ions.[13, 14] However, these Hydrogels lack 

mechanical strength and are not stable over long periods of time.[11, 12, 15] 

 

1.1.2 Chemically Cross-Linked Hydrogels  

Chemically cross-linked hydrogels are cross-linked covalently producing more stable 

and rigid cross-links. The formation of the polymer network involves the monomer, 

initiator and a cross-linker. Glutaraldehyde, ammonium persulphate (APS) with N,N,N′N′-

tetramethylene-diamine (TEMED) and methylenebisacrylamide are common cross-

linking agents employed. Glutaraldehyde has been used to cross-link hydrogels 

functionalized with amines, hydroxyl and hydrazide groups covalently.[16, 17]. Edman 

and co-workers[18] have synthesized polymers with dextran which can be used as a 

delivery vehicle for colon cancer therapy using APS with TEMED along with 

methylenebisacrylamide. Polyesters and polyamides have been synthesized by 

condensation reactions between hydroxyl groups or amines with carboxylic acids or their 

derivatives, the same methodology can be used to make hydrogels by cross-linking 

water soluble polymers forming amide linkages using  N,N-(3-dimethylaminopropyl)-N-

ethyl carbodiimide (EDC)as a cross-linker.[19, 20] Apart from these common cross-

linkers, effective chemical cross-linking can also be brought about using enzymes. 

Recently, Sperinde and co-workers [21, 22] used transglutaminase which is a Ca2+ 
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dependent enzyme to catalyze the reaction between the γ-carboxamide group of the 

polyethylene glycol functionalized with glutaminyl groups( PEG-Qa)and the ε-amine 

group of lysine to form a stable amide linkage. 

 

1.2 Stimuli Responsive Polymers 

Stimuli-responsive polymer gels are of significant interest due to their ability to undergo 

controlled and reversible shape changes in response to various stimuli like temperature, 

pH, ionic strength, electrical, magnetic, and light or their combinations.[23-32] The 

hydrogels respond to the stimuli with a change in volume, two or three-dimensional 

actuation or bending motion.  

 

1.2.1 Temperature Responsive Polymers  

Temperature or thermo responsive polymers are the most widely studied stimuli 

responsive polymer. In addition to the presence of hydrophilic groups, these polymers 

possess hydrophobic groups like methyl, ethyl and propyl groups.[31] Thermoresponsive 

polymers exhibit a lower critical solution temperature (LCST) which is the lowest 

temperature in the phase separation curve on concentration–temperature diagram. The 

polymers are hydrophilic below the LCST and swell when in contact with water 

molecules. Above the LCST, they expel water to form a more rigid and compact 

hydrophobic structure.  

 

The most widely studied thermoresponsive polymer is poly(N-isopropylacrylamide) or 

poly(NIPAAm). Poly(NIPAAm) undergoes a reversible phase transition at approximately 

32oC in aqueous solutions wherein it changes from a fully extended hydrophilic coil 

structure to a more compact hydrophobic globule state.[33-37] Poly(N,N-

diethylacrylamide) or poly(DEAAm) is another well studied  thermoresponsive polymer 
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which has a LCST in the range of 25-35 oC. Figure 2 shows the chemical structure of 

some of the thermoresponsive polymers. 

 

   

 

 

 

 

 

        

 

        a. Poly (N-isopropylacrylamide)                b. Poly (N,N-diethylacrylamide) 

 

 

 

 

 

 

 

 

            

 

c.   Poly(n- propylacrylamide)                             d. Poly(vinyl pyrrolidone) 

 

Figure 1.2 Chemical structures of a. Poly(N-isopropylacrylamide), b. poly(N,N-

diethylacrylamide), c. poly(N-propylacrylamide) and d. poly( vinyl pyrrolidone). 
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Control over LCST can be achieved by carefully adding hydrophilic or hydrophobic 

moieties to its molecular chains. In general, adding a small amount (1-10%) of a 

hydrophilic comonomer will increase the LCST whereas adding a small amount (1-10%) 

of a hydrophobic comonomer will reduce the LCST. For instance, addition of a 

hydrophilic monomer like acrylamide would make the LCST increase and depending on 

the amount added, even disappear.[38] However, on addition of a more hydrophobic 

monomer such as N-butylacrylamide would make the LCST to decrease.[38] 

 

There are a few limitations using responsive polymers like poly(NIPAAm) including 

biocompatibility, mechanical strength and swelling-deswelling rates. These issues can 

be resolved to an extent by copolymerizing with comonomers like poly(methacrylic acid) 

(poly(PMAAc) and forming interpenetrating networks (IPN). [39]. The responsive 

polymers can be made more biodegradable by grafting them onto biopolymers like 

alginate, also exhibiting improved pH and thermal responses due to the presence of free 

and mobile graft chains.[40] 

 

1.2.2 pH Responsive Polymers 

pH responsive polymers contain ionizable pendants groups  that can accept and donate 

protons in response to change in pH. The degree of ionization can be controlled by 

changing the environmental pH to a specific pH called pKa. [41] Polymers with pendant 

groups that are weakly ionizable that form weak bases like pyridine or imidazole are 

strongly charged below their pKa value. The polymers chains swell or uncoil as the 

resulting ionic interaction is much greater than the hydrophobic interactions between the 

alkyl side chains of the polymers. Conversely, as the pH is raised above the pKa the 

number of charged inonizable groups reduces with a simultaneous increase in the 

hydrophobic interactions. This causes the polymer coils to collapse and eventually form 
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a rigid and compact globule structure. Conversely, polymers with weak negatively 

charged pendant groups like carboxylic acids and pendant alkyl side chains will be in an 

extended uncoiled state above their pKa and will collapse forming a  compact globular 

structure below their pKa.[41] 

 

Adjusting the pH to appropriate values to bring about phase transition is an important 

criterion. The pH range over which conformational changes are desired can be designed 

by incorporating an ionizable group with a pKa matching the pH range in mind for the 

transition to take place or by changing the pH by adding hydrophobic moieties to the 

polymer backbone. Care should be taken in selecting the ionizable group for bring about 

the desired conformational change. For instance, poly(L-lysine) with a pKa ~10.5 is not a 

suitable candidate whereas poly(hystidine) with a pKa ~6.0 is a more suitable for 

biomedical applications requiring pH conditions close to the physiological pH of ~7.4.[42] 

 

1.2.3 Ionic Strength Responsive Polymers 

 Ionic strength responsive polymers exhibit phase transitions due to the presence of 

different types of salts from different concentration of salts. It is seen that the ability of 

ions to influence phase transition follows a general trend called the Hofmeister series.[4, 

5, 11] Hydrogels also respond to metal ions causing them to swell and collapse. 

Recently, it was shown that NIPAAm copolymerized with 1-vinylimidazole with affinity to 

bind copper(II) ions  showed a salt concentration dependent thermal precipitation of the 

polymer.[43] The role of salts in the precipitation of poly(NIPAAm) is explained in more 

detail in section 1.13.3. 
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1.2.4 Electric and Magnetic Field Responsive Polymers 

Electroactive polymers (EAP) which convert electrical energy into mechanical energy 

can be fabricated to respond to either an electric field or ions.[44, 45] Conducting 

polymers, polyelectrolyte gels and ionic polymer metal composites all fall under ionic 

EAPs.[44, 46-48] Though ionic EAPs can operate at low voltages (1-3V), they have a 

few limitations. Ionic EAPs need a protective layer to be operated in air and also show 

low electromechanical coupling efficiency, and have a slow response. On the other 

hand, electronic EAPs such as dielectrics, though require higher voltages (100-1000 V) 

to operate, they exhibit rapid response, have higher mechanical energy density and 

show greater strain.[24, 49]  

 

Magnetic field responsive polymers can be made by incorporating colloidal magnetic 

particles within the gel network. In one such study,[50] magnetic particles of colloidal 

dimensions were incorporated into poly(NIPAAm) co-poly(vinyl alcohol) hydrogels. The 

magnetic beads aligned in a straight line when a uniform field was applied. They tended 

to form aggregates in non-uniform fields due to the magnetophoretic force directed to the 

highest field intensity. The ability of these gels to undergo rapid and controllable 

changes in shape can be used to mimic muscular contraction.[24, 50] 

 

1.3 Applications 

1.3.1 Responsive Polymers for Control of Cell Adhesion 

Thermoresponsive polymers have been used successfully employed to regulate 

molecular recognition and control cell attachment and detachment without inhibiting any 

cellular functions. Poly(NIPAAm) with a LCST at around 32oC in aqueous solutions 

expells water in the collapsed state above its LCST. Thermoresponsive surfaces provide 

an alternative to traditional cell removal processes involving mechanical dissociation and 
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enzymatic treatments that might hinder certain cellular functions.[51, 52] Okano and co-

workers have extensively studied cell attachment and detachment using poly(NIPAAm) 

grafted to suitable substrates. They have shown that e-beam grafted poly(NIPAAm) on 

tissue cultured polystyrene dishes allowed cells to adhere and proliferate at 

temperatures above the LCST due to strong interaction between the hydrophobic 

poly(NIPAAm) surfaces and fibronectin, a extracellular matrix (ECM) protein. At 

temperatures below the LCST, the hydrophilic poly(NIPAAm) surfaces bring about  the 

cell detachment.[53-56] Figure 1.3 shows cell detachment from a poly(NIPAAm) surface 

below its LCST. 

 

 

Figure 1.3 Cell detachment from a surface tethered poly(NIPAAm) coating. 
 

1.3.2 Polymer Cushioned Model Lipid Layers for Cellular Membrane Behavior  

Lipid layers supported by polymer cushions have been investigated for mainly lipid 

assembly and membrane structure and dynamics.[57-60] and finding applications in 

biosensors platforms.[61] However, supported lipid layers (SLBs) have an intrinsic 

problem of lack of space between the solid support and the bottom leaflet of the lipid 
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bilayer. There are strong van der Waals, electrostatic, hydrophobic and steric 

interactions between the lipid layer and the planer glass supports which trap a thin layer 

of water.[62, 63] This hydration layer is important in maintaining lateral mobility of the 

lipid in bilayer. [64-66] Recently, it was shown that a thermoresponsive polymer cushion 

provides an ideal surface for membrane deposition and help to facilitate deviations from 

planer geometry. This system provides an ideal platform to study protein-lipid 

interactions, trans-membrane ion transport and may have far reaching applications in 

membrane based biosensors.[67] Figure 1.4 shows the polymer cushioned lipid bilayer 

supported on a thermoresponsive polymer. 

 

 
 

Figure 1.4 Polymer cushioned lipid bilayer supported on a thermoresponsive 

poly(NIPAAm) coating. 
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1.3.3 Microassembly  

Microassembly is an active area of research where responsive polymers have been 

used in micropatterned surfaces with programmable chemistry having effective control 

over wettability and bio-fouling in these surfaces. Advances in microfrabrication coupled 

with wet chemistry have made it possible to create surfaces which host a number of 

different functional groups. Recently, using a microfabricated heated array, proteins and 

cells were selectively adhered to poly(NIPAAm) coating. When exposed to protein and 

cell samples, the patterned surfaces selectively adhered to the heating coil coated with 

poly(NIPAAm).[68] Figure 1.5 shows the schematics of the microfabricated heating array 

housing the adsorbed protein on top of a poly(NIPAAm) coating.[68] 

 

 

Figure 1.5 Microfabricated heating array with adsorbed protein on top of a poly(NIPAAm) 

coating.[68] 
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1.3.4 Drug Delivery 

Many studies are currently underway looking into ways of delivering insulin through 

glucose responsive hydrogels. pH responsive hydrogels especially sensitive to glucose 

oxidase has been of particular interest as a  suitable delivery vehicle for insulin.[69-71]  

Both glucose oxidase and catalase are immobilized in a polybasic pH responsive 

polymer. The glucose from the surrounding solution diffuses into the hydrogels triggering 

the catalysis of glucose by glucose oxidase to form gluconic acid which results in a pH 

drop within the hydrogels. The relative change in the osmotic pressure due to the 

diffusion of different solutes in and out of the hydrogels  drives the swelling and collapse 

of the hydrogels.[72]  

 

A new glucose sensitive hydrogel based on sulfonamide chemistry and covalently 

coupled glucose oxidase and catalase has been reported.[73]. The pH induced phase 

transition is seen between a pH range of 6.5-7.5 for hydrogels placed in an isotonic 

phosphate buffered solution at pH 7.4. The hydrogels showed a reversible swelling 

range between 12-8 water (g)/ polymer (g) for a glucose concentration of 0-300mg/dl at 

37 oC.[73] 

 

1.4 Volume Phase Transition in Responsive Polymers 

Tanaka[74] demonstrated the unique properties of gels by investigating the volume 

phase transition of gels in a partially ionized acrylamide gel solvated in a water-acetone 

mixture for the very first time.  
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1.4.1 Fundamental Interactions for Volume Phase Transition in Gels  

1.4.1.1  Van der Waals Interactions 

It has been reported that for a partially hydrolyzed acrylamide gel swollen in a acetone-

water mixture, the main polymer-polymer interaction is due to van der Waals forces. 

Acetone being a non-polar solvent helps in augmenting the attractive forces between the 

polymers chains in the network.[75, 76] 

 

1.4.1.2 Hydrophobic Interaction  

The hydrophobic polymer chains and the surrounding water molecules are strongly 

hydrogen bonded to form ordered ice-like structures called ice-bergs. This lowers 

enthalpy and entropy of mixing, giving rise to what is known as the hydrophobic 

interaction. Studies on the phase behavior of gels have shown that they swell at lower 

temperatures and collapse at higher temperatures. This is due to the hydrophobic 

interaction between the polymer network and water molecules and is opposite to that 

seen due to van der Waals interactions. The polymer network assumes a more compact 

and ordered structure as they shrink due to greater hydrophobic interactions at higher 

temperatures.[76-78] 

 

1.4.1.3  Hydrogen Bonding 

Hydrogen bonding seems to play a major role in the phase transition of responsive 

polymers. FTIR studies have revealed that there is significant intermolecular and 

intramolecular hydrogen bonding between polymer-water molecules and between 

polymer-polymer chains respectively. At the demixing temperature, there is a decrease 

in the intermolecular hydrogen bonding as water is expelled out of the network and a 
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corresponding increase in the intramolecular hydrogen bonding due to the close 

proximity of the polymer chains.[79, 80]  

 

1.4.1.4  Electrostatic Interaction  

Electrostatic interactions are long range interactions which become prominent in a 

hydrophobic environment. Strong repulsive interactions can be seen in polymers having 

with positively or negatively charged moieties. In order to maintain electro-neutrality, the 

counterions have to be localized near the polymer chains. This results in an increase in 

the osmotic pressure creating a Donnan potential inside and outside the polymer 

gels.[76] The different interactions are depicted as shown in figure 1.6(a-b) and 1.7(a-b) 
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a. 

 

           b. 

 

 

Figure 1.6(a-d) Fundamental interactions for volume phase transition in hydrogels. 

Adapted from[76] 
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c.   

 

d. 

 

 

Figure 1.6(Continued) 
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1.5 Types of Volume Phase Transition in Thermoresponsive Polymers 

Volume phase transitions can be classified into three categories based on their swelling 

behavior. 

 

1.5.1 Thermoshrinking  

Poly(NIPAAm) is a typical example of a gel exhibiting a thermoshrinking type of phase 

transition. An increase in temperature above its demixing temperature causes the gel to 

shrink in by one order of magnitude. Some of the thermoshrinking polymers are 

composed of monomers of N-methylacrylamide and N, N-dimethylacrylamide. The 

predominance of hydrophobic moieties in these polymers plays a crucial role in the 

shrinking of the gels.[75] 

 

1.5.2 Thermoswelling  

Thermoswelling polymer gels swell or expand in volume with increase in temperature. 

The hydrophilic comonomer like acrylic acid and methacrylic acid enable the gels to 

swell to exhibit a upper critical solution temperature (UCST).[75] 

 

1.5.3 Convexo 

Convexo type of phase transition is seen in polymers which can swell or shrink in 

response to specific stimuli. Cationic gels in acetone-water mixtures seem to be in the 

collapsed state at temperatures above 40oC. As the temperature drops to 40oC, the gel 

suddenly swells reaching its swollen state. It remains in this state till the temperature 

drops to 13oC, where again it goes through a discrete phase change by collapsing to its 

shrunken state. [81] 
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1.6 Hydrophilic and Hydrophobic Hydration  

Poly(NIPAAm), a thermoresponsive polymer has both hydrophilic (C=0, N-H) and 

hydrophobic (isopropyl) moieties. In the swollen state, water strongly hydrogen bonds 

with the hydrophilic amide (C=O, N-H) groups resulting in hydrophilic hydration. Water 

tends to form cage-like structures around the hydrophobic moieties when the polymer is 

below its LCST giving rise to hydrophobic hydration. As the temperature increases 

beyond the LCST, the water around the hydrophobic moieties is expelled bringing the 

hydrophobic moieties of the polymer chain close together known as the hydrophobic 

effect or hydrophobic interaction.[82-85] 

 

It seems that the polymer precipitation from aqueous solutions or collapse of the gels is 

brought about due to the dominance of the hydrophobic moieties. Hydrogen bonds 

between water and polymer segments are first broken as the temperature is raised. 

Subsequently, hydrophobic groups dominate as polymer chains come closer resulting in 

the collapse of the gel or precipitation of the polymer from solution.  

 

The swelling of polymer in water is strongly dependent on the molecular structure of the 

polymer. For example, it was found that NIPAAm and N-propylacrylamide (NNPAAm) 

had a discontinuous transition at 35oC and 25oC respectively whereas N-

cyclopropylacrylamide (NCPAAm) had a continuous transition between 40-50 oC.[78]  

 

In most cases, the degree of hydrophobic interactions is proportional to the number of 

water molecules that are available to form hydrophobic hydration around the alkyl 

groups and also increases with temperature. Therefore, gels with hydrophobic moieties 

larger surface area tend to have lower phase transition temperature.[76]  
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Specific interactions between polymer segments and water are necessary for driving the 

transition. At lower temperatures, a thin layer of water surrounds the hydrophilic amide 

moieties giving rise to negative values for both entropy and enthalpy to the solution 

process.  

 

Water also surrounds the hydrophobic moieties forming ice-like structures at lower 

temperatures further increasing the entropy of the system.  As the temperature 

increases, hydrogen bonds between water and the hydrophobic moieties break, which in 

turn leads to stronger interaction between polymer chains.[86, 87] This process is 

schematically shown in figure 1.7 for poly(NIPAAm). 
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Figure 1.7 Schematic representation of hydrophilic and hydrophobic interaction in 

poly(NIPAAm). 
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1.7 The Flory- Huggins Model 

The Flory–Huggins theory (Flory 1953) is a lattice mean-field approximation to 

macromolecular solutions where polymer segments and solvents molecules are 

distributed in a lattice with Ng elements.[31-34] It considers that there is an entropy-of-

mixing and an interaction-energy contribution to the Gibbs free energy of mixing. The 

entropy of mixing contribution arises from the number of possible configurations of the 

solutes in solution. These are between polymer-polymer, solvent-solvent or polymer-

solvent interaction. Larger the solute, the smaller its contribution to the entropy of-

mixing. A typical lattice model for polymer-solvent system is shown on figure 1.8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8 Lattice model of polymer segment and solvent molecules 

 

The entropic contribution is given by, 

 

                                      (1.1) 
1 1 2( ln ln )mS k n φ φ∆ = − +



www.manaraa.com

27 
 

where k is the Boltzmann’s constant, ni is the number of moles and iφ  is the volume or 

molar fractions of 1 = solvent and 2 = polymer and are given by 

 

                                          (1.2) 

 

                                               (1.3) 

 

where xi are the number of segments in species (1 = solvent and 2 = polymer). For 

monomeric solvent, 1= 1. 

 

Upon dissolution solvent-solvent (1-1) and polymer-polymer (2-2) interactions are broken 

and solvent-polymer interactions are created. The exchange energy for one pair can be 

calculated  

 

   (1.4) 

 

The enthalpy of mixing for the number of the contacts N12
 
between solvent with volume 

fraction φ1 and polymer with volume fraction φ2 in the lattice with the coordination 

number z. 

 

   (1.5) 

 

Using thermal energy, the dimensionless Flory-Huggins interaction parameter χ can be 

obtained  
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                                                (1.6) 

 

where the interaction parameter 1
T

χ ∝   

This parameter depends on concentration and temperature  

 

         (1.7) 

 

(1.8) 

    

with enthalpic and entropic components χ
H 

and χ
S 

respectively  

 

   (1.9) 

 

   (1.10) 

 

The total number of lattice sites N
g 
can be extended to Avogadro number N

A 
by  

 
                                            (1.11) 

 

Thus enthalpy of mixing ΔHm can be rewritten as                    

 

     (1.12) 

 

The polymer-solvent interaction parameter accounts for free-energy changes caused by 

the mixing process. Values of χ  are usually between 0 and 1, with an increased value of 

/z u kTχ = ∆

1 2 2 2
2

oχ χ χ φ χ φ= + +

/Hs Tχ χ χ= +

1 2
2/ ( )H h RTχ φ= ∆

1 2
2/ ( )S S Rχ φ= ∆

1 1/g AN N n φ=

2 1 1mH kT n xχφ∆ =
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χ  indicating poorer solvents for the polymer and thus reduced degrees of polymer 

dissolution. It is important to recognize that χ  is not a constant for a given system but is 

a function of temperature and concentration. If one combines the configuration and the 

interaction contributions, the Gibbs free energy of mixing can be expressed by 

 

                                  1 1 2 2 2 1( ln ln )mG kT n n nφ φ χφ∆ = + +                                          (1.13)  

 

1.7.1 Chemical Potential and Osmotic Pressure  

The chemical potential μ of the solvent in the solution relative to its chemical potential μo
 

in the pure liquid is obtained by differentiating the free energy of mixing, equation (2.22) 

with respect to the number n1 of solvent molecules (Flory 1953). The result is multiplied 

by Avogadro’s number N in order to obtain the chemical potential per mole and the 

equation is given by 

 

             (1.14) 

 

where R is the gas constant.  

For large values of x2 and at high concentrations, equation (2.23) becomes, 

 

                    (1.15) 

 

For the osmotic pressure,  

1 1 1( )oVπ µ µ= − − , here V1 is the molar volume of the solvent. Hence, from equation 

(2.24), the osmotic pressure is given by, 

 

1 1 2 2 2 2
0 2ln(1 ) (1 1/ )RT xµ µ φ φ χφ − = − + − + 

1 1 2 2 2
0 2ln(1 )RTµ µ φ φ χφ − = − + + 
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                    (1.16) 

 

1.7.2 Modified One-Dimensional Flory Rehner Model 

The Flory-Rehner model has been the widely used to analyze swelling of networks.[88-

91] It incorporates the osmotic pressure from solution behavior as shown in equation 

(2.25) and chain elasticity contributions. To develop a framework in which to understand 

the relationship between film composition and its structure in contact with aqueous 

solutions, we will map out the phase-volume behavior as a function of the relevant 

system parameters and interpret the phase windows with respect to the Flory-Rehner 

phenomenological model.41 

 

 

       (1.17) 

 

The three terms preceded by KBT describe the osmotic pressure due to mixing term from 

equation (2.25), the osmotic pressure due to counterions if present, and the osmotic 

pressure due to elastic deformation of the network. Equilibrium is defined when the 

osmotic pressure in the network is equal to the osmotic pressure outside the network. 

way. To improve agreement with experiment, empirical concentration dependence has 

been proposed 42 

 

 

                                (1.18) 

 

where each term has a temperature dependence of the form. 

1 2 2 2
2( / ) ln(1 )RT Vπ φ φ χφ = − − + + 

21
2ln(1 ) ( , ) 1

2
do

B B B
c o o

K T T K Tf K T
N
φ φ φφ φ χ φ φ φ

φ φ

− 
     Π = − + − + + − − −           

0 1 2
2( , ) ...Tχ φ χ χ φ χ φ+= + +
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,2

,1

K

K K T

χ
χ χ= +

                                                     (1.19)
 

 

1.8 Presence of Co-Existence Phase in Phase Transition  

The existence of multiple phase during the discontinuous transition of NIPAAm has been 

reported.[92, 93] The temperature width for the co-existence in the case of neutral gels 

and ionic gels was found to be 0.05oC and 0.1oC respectively for cylindrical NIPAAm 

gels.[92] In gels with higher ionic content, the co-existence phase persisted over a 

temperature width of 4oC. In such cases, the transition temperature is usually observed 

to be at the middle of the co-existence region. However, there is no theoretical 

explanation for such a premise.[92] 

 

The presence of co-existence phase in NIPAAm is not explained by the Flory-Rehner 

theory as it assumes that at equilibrium, the gels are in a homogeneous state. 

Experimental results have shown that the phase co-existence is a stable or metastable 

equilibrium phenomenon.[92] 

 

Hirotsu [92] showed the evolution of the phase co-existence in cylindrical NIPAAm gels. 

The cylindrical gels in their swollen state shrunk in size as the temperature increased. 

The transition from the swollen state to the shrunken state for an ionized NIPAAm gel 

with the formation of a bottleneck region as shown in figure 1.9. The co-existence phase 

starts at T1 which demarcates changes from the completely swollen state with the 

formation of a nuclei and ends at T2 demarcating the boundary after which the gels is in 

the shrunken state. On cooling, the nuclei are formed at both ends of the gel and moves 

towards the centre. This kind of phase co-existence where swollen gel, shrunken gel and 

solvent surround the gel exist is called triphasic equilibrium.[94] 
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Figure 1.9 Schematic representation of NIPAAm gels exhibiting the presence of phase 

co-existence. Adapted from [92]. 

 

The apparent existence of the triphasic equilibrium over a wide temperature range is in 

violation of the Gibbs phase rule. According to the Gibbs phase rule, there should be 

only one temperature over which the triphasic transition should occur as a two 

component-three phase system should have only one degree of freedom.[92]  

 

The gels are in a distinct thermodynamic state as the volume fraction of the co-existence 

phases is a monotonic function of temperature. This state is in a heterogeneous 
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condition due to the mixing of two phases. But the mixing ratio is not arbitrary, but has a 

definitive value which is a function a temperature. It is also seen that the formation of the 

bottleneck region is seen only in cylindrical gels suggesting that the distribution of 

domains is shape specific.[92] 

 

It is seen that two completely different swelling curves can be obtained for the same gel 

by different methods. It has been reported that the discontinuous first order transition 

occurs on a local scale and the change in the total volume of the gels is more of a 

continuous phenomenon. Figure 1.10a depicts the swelling curve by measuring the 

diameter ‘d’ for the cylindrical gels and figure 1.10b depicts the swelling for by finding the 

weight ‘W’ of the gels. [92, 95] 

 

 

          a.                                                                        b.      

 

Figure 1.10 (a-b) Schematic representation of different swelling curves for the same 

sample by measuring the diameter‘d’ and weight ‘W’ of the cylindrical gels as a function 

of temperature (T). Adapted  from [92] 
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1.9 Water in Polymeric Systems  

Water soluble polymers and polymer gels are associated with water and their role in 

hydrophobic and hydrophilic hydration is well documented. The interaction between 

water and polymer chains is of significant interest to the polymer community because of 

some unique properties that result due to their interaction. For instance, it is seen that 

water does not freeze even below its freezing point when associated with polymer 

chains.[96, 97]. This section will focus on the use of vibrational spectroscopy (Raman 

and FTIR) to elucidate the different molecular interactions of water with polymers and 

the different parameters that influence their association. 
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1.9.1 Effects of Degree of Cross-Linking of Gels on the Structure of Water  

Water trapped in chemically cross-linked gels depends on the degree of cross-linking as 

the size of the spaces influences polymer-water interaction. The intensity of the 

collective band (C) given by ( ) / ( )cI w dw I w dw∫ ∫   from Raman experiments where I   

is the intensity in the parallel position, have been shown to be affected by cross-link 

density.[98]  

 

Maeda and coworkers have reported that the C value of a poly(acrylamide) or poly( 

PAAm) gels with  a low degree of cross-linking to be nearly equal to aqueous solutions 

of PAAm.[99] Conversely, at higher cross-link density the C value was less compared to 

PAAm solutions. As the polymer concentration in gels and in solution was identical, the 

amount of hydration water is expected to be the same. Based on this, they proposed that 

water exists in three states inside the polymer gels; (1) hydration water, (2) water in 

spaces surrounded by polymer chains and (3) bulk water[98, 99] as shown in figure 

1.11. 
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Figure 1.11 Formation of hydration and interstitial water with polymer gel. Adapted from 

[98] 

 

1.9.2 Effects of Monomeric Structures on Surrounding Water  

The role of monomeric structures on water can be explained by looking into the number 

of hydrogen bond defects that are introduced into the hydrogen bonded network 

structure of water per monomer unit of the polymer (N) defined as N= Pd/fx where pd is 

the defect probability and fx is the number of monomer unit per 0H oscillator.[92, 100] 

Maeda and co workers have determined the N values for some polymer systems at 25oC 

as shown in table 1.[100]  
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Table 1.1. N values for different polymeric systems at 25 oC.[100] 

 

Polymer Molecular Weight N 

• Poly(acrylic 

acid)(PAA) 

• Poly(acrylic acid 

sodium salt) (NaPAA) 

• Poly( ethylene glycol) 

(PEG) 

• Dextran (DEX) 

• Poly( allylamine ) 

hydrochloride (PAIA) 

• poly (vinylpyrrolidone) 

(PVP) 

 

1000-5000 

 

5000 

 

2000-20000 

                  

4000 

60000 

 

40000 

3.4 

 

8.7 

 

1.0 

                  

2.3 

7.6 

 

1.0 

The N values of polyelectrolytes like poly(acrylic acid) (PAA), poly(acrylic acid-sodium 

salt) (NaPAA), is greater than those of neutral polymers. This may be due to greater 

interaction between the ionizable groups and counterions of polyelectrolytes and water 

in their hydration shells.  

 

In the case of the neutral polymers, the N values are greatly dependent on the volume 

ratios of their hydrophobic moieties to their hydrophilic moieties. [100] It follows the 

series PAAm > dextran > (poly(NIPAAm)> PEG = poly(N-vinylpyrrolidone) (PVP)).  
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The extra hydrophobic groups in poly(NIPAAm) might be responsible for a lower N value 

than PAAm. PVP with oxygen and nitrogen atoms buried inside a larger hydrophobic 

moiety makes is responsible for the lower N value compared to poly(NIPAAm).[100]. The 

N value depends on the whether there are ionizable groups or polar groups which tend 

to increase the N value due to their interaction with water. Conversely, the presence of 

hydrophobic groups might enhance hydrogen bonding resulting in lower N values. 

 

1.9.3 Hydrogen Bonding Interactions 

The miscibility of poly(NIPAAm) in water arises mainly due to the ability of the amide 

side groups to form hydrogen bonds with water molecules in addition to ordered water 

molecules around the hydrophobic isopropyl groups.[36, 101] FTIR has been used to 

delve into some of these mysteries. The high sensitivity of IR spectra not only towards 

conformational changes of a molecule but also to the local microenvironment of a 

molecule in addition to their ability to investigate interaction between molecules, 

especially the vibrations of an amide group makes it a very important tool in the 

investigation of polymer phase transition. The amide I and II are of particular interest 

based on their interaction with water molecules. The amide I mode comprises mainly 

due to the CO-stretching vibration) and the amide II mode mainly comprises of a 

combination of N-H-bending (60%) and C-N-stretching (40%) vibrations both sensitive to 

the strength of hydrogen bonding.[102] 

 

Maeda and coworkers[102] investigated the coil-globule transition of poly(NIPAAm) in 

water and D2O by (FTIR) spectroscopy. IR spectra of the polymer solutions measured as 

a function of temperature indicated that the intensities of the amide moieties and the 

isopropyl peaks greatly increased above the LCST. Heating the polymer solution 

resulted the amide II, C-H stretching and the C-H bending bands to shift to lower 
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wavenumbers (red shift) while the amide I band shifted to higher wavenumbers (blue 

shift). They found that the amide I band could be deconvoluted to one sub band 

centered at 1625cm-1 below the LCST whereas two components, one centered at 

1625cm-1 and the other at 1650cm-1 were present  at temperatures above the LCST. The 

sub band at 1625cm-1 was assigned to C-O group bound to water molecules through 

intermolecular hydrogen bonding and the sub band at 1650cm-1 was assigned to the C-

O bound to the N-H group of the polymer through intramolecular hydrogen bonding.[102] 

 

The dehydration of the isopropyl groups along with the polymer backbone indicated by a 

red shift in the symmetric and asymmetric C-H groups indicate the dominance of the 

hydrophobic moieties above the phase transition temperature.[102] 

 

A recent dielectric relaxation study attributed the dehydration to characteristics resulting 

from the polymerization of the monomer, NIPAAm. [103] Water molecules found to be 

surrounding poly(NIPAAm) were found to be temperature independent. They concluded 

that the sharp transition seen in poly(NIPAAm) was induced by a cooperative 

dehydration of poly(NIPAAm).[103] 

 

The effect of salts on the LCST of poly(NIPAAm) has been investigated Kesselman and 

coworkers using  ATR-FTIR.[104] It was found that Na2SO4 and K2SO4, two strong 

salting out salts induced phase separation in aqueous poly(NIPAAm) solutions. It was 

seen that the addition of the sulphate ion not only depresses the transition temperature 

but also increases the importance of the hydrophobic interactions below the demixing 

temperature as evident from an increase in the relative area of the intramoledular sub 

band resulting from the deconvolution of the amide groups.[104] 
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1.9.4 Phase Transition Affected by Gel Dimension  

The LCST seen in polymer solutions manifests as the volume phase transition 

temperature (VPTT) for gels. Large bulk hydrogels typically exhibit poor response time 

as their swelling/deswelling kinetics is usually governed by a diffusion limited transport 

process where the deswelling rate of hydrogels is inversely proportional to the square of 

its smallest dimension.[105, 106] Bulk hydrogels also show formation of bubbles and 

skin formation affecting deswelling kinetics.[107, 108]  

 

Gels polymerized above the LCST exhibiting faster response time due to the presence 

of large pores have been reported. Microgels and nanogels often are in the size range of 

1nm-1μm[109] exhibit similar VPTT as hydrogels. However, they exhibit improved 

response times and diffusivity and also have advantages in terms of size and volume 

and find applications in a number of fields like drug delivery,[110] as micro-

actuators[111] and in sensor platforms.[112] The different gel dimensions are as shown 

in figure 1.12.  
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Figure 1.12 Schematic representation of gel dimensions of hydrogels, microgels, 

nanogels and single chain polymer segment. (Gel dimensions are not to scale). 
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1.10 Unconstrained and Surface Tethered Polymer Networks  

Surface attached polymer networks provides an alternative to bulk hydrogels showing 

superior response times in swelling and deswelling kinetics compared to bulk gels  

where the collective diffusion step is the rate limiting step. Scaling down on the gel 

dimensions make them significantly enhances performance and has found applications 

in microfluidic platforms.[113] This makes it imperative that the characterization of 

surface tethered networks is pertinent.  The swelling of unconstrained and surface-

attached polymer gel is schematically shown in figure 1.13. 

 

A critical issue in gaining insight in to surface tethered networks is characterizing the 

swelling behavior of these confined surfaces. Surface confinement allows the gels to 

swell only in one dimension, normal to the surface with no significant swelling parallel to 

the surface. This type of confinement will have an impact on the mechanical and 

structural properties in addition to permeability and dynamics of the network.  It has been 

reported  that surface tethered poly(NIPAAm) shows a VPTT that is higher than 

unconfined networks.[114, 115] It is also observed that the swelling ratio reduces 

drastically for surface tethered networks to about 15 fold compared to bulk gels which 

exhibit up to a 100 fold increase in swelling.[114] 
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Figure 1.13 Swelling of unconstrained and surface-attached polymer gel. 
 

For isotropic, neutral networks, the popular  Flory−Rehner theo ry explains to an extent,  

the relationship between the cross-link density and the equilibrium swelling in a good 

solvent.[116, 117] For sufficiently low cross-link densities, the equilibrium swelling of a 

gel scales as the cross-link density to the -3/5 power as predicted by the Flory-Rehner 

model. As surface attachment restricts swelling to one dimension, a lower dependence 

on cross-link density is expected. [118] 

 

A recent study by Toomey and co-workers[118] have shown that unconstrained 

networks swell to a much higher degree compared to surface-attached networks due to 
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higher degrees of freedom in unconstrained networks, while surface confinement 

physically or mechanically prevents the network to swell unconditionally. 

 

The degree of swelling for a unconstrained gel is presumed to be equal. 

 

 αx = αy = αz                            (1.20) 

 

where αi is the linear deformation Le/Lo in the i direction. Considering simple geometric 

conditions, the degree of swelling for surface-attached networks will be the cube root of 

the unconstrained network. 

 

For the nonattached gel, the degree of swelling in all three dimensions is presumed to 

be equal, where αi is the linear deformation Le/Lo in the i direction. Therefore, by 

constraining the network to the surface, from simple geometric considerations, it may be 

expected that the degree of swelling of the surface-attached network (sa) will be the 

cube root of the unconstrained network (uc), or Ssa = Suc
1/3. [118] 

 

It is seen that the linear swelling degree of surface-attached networks exceeds that of 

unconstrained networks. This observation can be better understood by the Flory-type 

expression for free energy.[119] The polymer network in a good solvent is subjected to 

two opposing forces: the thermodynamic force of mixing favoring swelling of the 

networks and the elastic retractile force which opposes swelling. The Gibbs free energy 

of the system can be written as 

 

                                            m elasticG G G∆ = ∆ + ∆                                                     (1.21) 
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The mixing free energy is given as 

 

                                          
1 1 1ln( )Gm n n

kT
φ χ φ∆ = − +

                                             (1.22)
 

 

where k is the Boltzmann constant,  

         T is the absolute temperature,  

        n1 is the number of solvent molecules,  

        φ is the polymer fraction in the swollen gel, and  

       χ is the Flory polymer−solvent interaction parameter.  

 

The expression for the elastic free energy is 

 

                                    

2 1
2

lnelasticG dv
kT

α α
∆    = − −                                                   (1.23)

 

 

where ν is the number of cross-links in the network and d is the number of dimensions in 

which the network can swell. The polymer volume fraction φ in the swollen network is 

related to its linear deformation α is given as 

 

                                                          
o
d

φφ
α

=
                                                            (1.24)

 

 

After minimization of free energy ΔG of the swollen network, we get the following 

relationship for the equilibrium linear deformation α and the degrees of freedom by which 

the network is capable of swelling.[118] 



www.manaraa.com

46 
 

                                         

1 2

1
1
2

/( )d

o cN
α

χ φ

− +
 
 
 
  
  
  

≈
−

                                              (1.25) 

 

We see that α shows a stronger dependence on the cross-link density 1/Nc, where Nc is 

the number of segments between cross-links as swelling is confined to fewer 

dimensions. As the volumetric swelling degree S = αd, the dependencies of both S and α 

can be determined for three-dimensional and one-dimensional swelling in a good solvent 

and are given as[118] 

 

, 
                            

1 5
1

/

uc
o cN

α
φ

−
 
 
 

≈
    

3 5
1

/

uc
o c

S
Nφ

−
 
 
 

≈
                                        (1.26)

 

 

,                             
1 3

1
/

sa
o cN

α
φ

−
 
 
 

≈      
1 3

1
/

sa
o c

S
Nφ

−
 
 
 

≈
                                        (1.27)

 

 

Toomey and co-workers[118] further showed that the surface-attached networks show 

greater linear deformation than the equivalent unconstrained networks which can be at 

least quantitatively explained by the above model. They concluded that the surface-

attached network experiences a higher mixing osmotic pressure, which is partially 

relieved by further extension in its swelling direction. This leads to higher linear swelling 

ratio in surface-attached networks than in unconstrained networks.  [118] 
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It is seen that confinement affects lateral swelling for networks with higher cross-link 

density and for those containing a high concentration of ionizable groups. [32, 114, 115, 

120, 121] In particular, the volume phase transition temperature started decreasing 

above a critical film thickness and the presence of a substrate prevented the network 

from collapsing completely even above the phase transition temperature.[120, 122] The 

swelling in the lateral direction due to osmotic force induces a biaxial compressive 

stress. Such mechanical stresses can be large enough to suppress adhesion forces 

bringing about delamination of the film from the substrate. [122, 123] 

 

1.11 Synthesis Strategies for Fabricating Polymer Thin Films 

Surface-attached polymer thin films can be fabricated by 

1. Crosslinking copolymerization (adding multifunctional comonomers), 

2. Crosslinking (co)polymers with reactive groups, and 

3. Crosslinking with high-energy irradiation.  

 

Crossing polymers by adding multifunctional comonomers usually involves a reaction 

mixture containing monomers, a cross-linking agent, and a free-radical initiator is can be 

either spin coated on to a substrate or alternatively confined between two planar 

substrates aided by spacers and polymerized in situ.[114, 122] Among the free radical 

polymerization techniques, UV-initiated polymerization is a popular method allowing 

patterning of polymer thin films on different substrates.[124] The photo-initiator is added 

directly to the reaction mixture or can be immobilized to the substrate. Chemical 

immobilization of the photo-initiator provides us with a reactive surface from which the 

growth of a polymer film can be initiated. This method also allows us to have control over 

thickness of the film by varying the exposure times and also the gives the opportunity to 

work with substrates with complex geometries.[115, 120, 125] 
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A schematic representation of UV photo-polymerization of NIPAAm using N,N′-

methylenebisacrylamide (BisAAm) as the cross-linking agent and benzoin ethyl ether 

(BEE) as the photo-sensitizer is shown in figure 1.15 The UV light irradiates BEE to 

generate a stable triplet state.[126] BEE in the triplet state can abstract any hydrogen 

atom to create an active site for the surface-graft polymerization. Grafted poly(NIPAAm) 

gels are then formed on the surface of the substrate due to free radical interaction with 

either the monomer or the cross-linking agent. [125] 

 

 

 

Figure 1.14 Schematic representation of grafted poly(NIPAAm) by photo-cross-linking. 

Adapted from [125] 

 

Electrochemically-induced polymerization technique is another example of free-radical 

polymerization. The method involves the decomposition of an electro-active initiator like 

KPS which could be at a positive or at a negative potential (as shown in figure 1.15). 
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Free radical polymerization begins with the decomposition of the initiator at the electrode 

surface giving rise to a polymer coating. Polymer metal interaction is due to strong 

adhesion forces based on physisorption. For instance, poly(NIPAAm) thin film was 

grown by electron transfer from a conducting surface to a redox-active initiator like 

potassium persulphate (KPS) .[127] The film thickness was controlled by varying the 

electrolysis time. 

 

 

 

Figure 1.15 Schematic representation of an electrochemically induced polymerization 

process. 

 

Plasma polymerization is a single -step, solvent-free process used for producing highly 

cross-linked hydrogel thin films without the need of cross-linking agents as cross-linking 

is brought about through the bombardment of ions/electrons during the vapor phase 

deposition process. In addition, substrate temperature and ion bombardment flux and 
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energy to the growing polymer film can be easily modified and controlled due to the 

reactor configuration used, providing very uniform cross-link density distribution.[128-

130] However, delamination of polymer films remain an issue and require an adhesion 

mediator to effectively attach films to solid substrates. For instance, NIPAAm films have 

been known to delaminate from silicon substrates in aqueous environments. The use of 

adhesion promoters like γ-methacryloxypropyl trimethoxysilane, 3-aminopropyl 

triethoxysilane, vinyl triethoxysilane and (N,N′-diethylamino) dithiocarbamoyl propyl-

(triethoxy) silane have been used with good results.[114, 131-134] 

 

The cross-linking of copolymers containing photo-reactive pendent groups or monomers 

like benzophenone or 4-cinnamoylphenyl methacrylate with UV irradiation is another 

technique which offers another route to fabricate robust thin films with controllable film 

thickness and cross-link density. [121, 135-138] We have used this strategy to photo-

cross-link poly(NIPAAm) thin films using benzophenone modified pendent groups. This 

particular technique is explained in more detail in the next section. 

 

Polymerization using high-energy irradiation (e.g., electron beam, g-rays, UV-light) is 

another widely used method to produce thin films. The irradiation leads to random chain 

scission and recombination of the free radicals that are formed in the process to give rise 

stable cross-linked networks. Polymer films of a lateral resolution of 100nm have been 

produced by this process. The film thickness is controlled by varying the irradiation 

dosage.[139-141] 

 

Another popular technique is fabricating thin films using the multiple layer-by-layer (LbL) 

method shown in figure 1.16, producing polymer thin films with tailored functionalities. 

[142] This technique is based on sequential steps involving chemical reactions between  
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copolymers containing amino or carboxylic groups.[143] For instance, thermoresponsive 

hydrogels was prepared from a sequential chemical reaction between poly(vinylamine-

co-N-vinylisobutyramide) [poly(VAm-co-NVIBA)] and poly(acrylic acid). The carboxyl 

group of polyAAc was activated by 1-ethyl-3-(3-(dimethylamino)propyl)-carbodiimide 

hydrochloride (EDC) for the reaction with the amino group of poly(VAm-co-NVIBA) to 

yield the amide linkage.[143] By using similar sequential steps, any number of thin films 

can be assembled on top of each other with different functionalities. 

 

 

 

Figure 1.16 Layer by layer (LBL) assembly of multifunctional polymer film. 
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1.12 Formation of Surface-Attached Networks from Benzophenone  

Based Chemistry 

The use of photo-cross-linkers is a popular way to cross-link polymers or attach a 

biomolecules to polymeric surfaces. The use of benzophenone and benzophenone like 

photo systems provides robust cross-linking across different platforms. 

 

The use of benzophenone (BP) photoprobes can be attributed to three advantages. 

[144] 

1. BPs is chemically more stable than diazo esters, aryl azides, and diazirines.  

2.  BPs can be manipulated in ambient light and can be activated at 350-360 nm, 

avoiding polymer and protein-damaging wavelengths.  

3. BPs can react preferentially with any unreacted C-H bonds, even in the presence 

of solvent water and bulk nucleophiles. These three properties together provides 

for an efficient way to covalently cross-link polymer surfaces with remarkable site 

specificity. [144, 145] 

 

1.12.1 Mechanism of BP Cross-Linking  

Crossing of the benzophenone photophore takes place at 350-360nm which results in 

the promotion of a photon from a nonbonding n orbital to an antibonding π* orbital of the 

carbonyl group as shown in figure 1.17. This leads to the formation of a biradicaloid 

triplet state, the electron- deficient oxygen n-orbital abstracts hydrogen atoms from 

neighboring weak C-H bonds combining with the half-filled n-orbital.[144]  When amines 

or other similar heteroatoms are close to the excited carbonyl group, a electron transfer 

step takes place resulting in the abstraction of protons from adjacent alkyl groups and a 

radical 1, 2 shift. Stable C-C bonds are then formed when ketyl and alkyl radicals 
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combine forming benzpinacol-type compounds. The biradicaloid species is known to 

only to attack C-H bonds which are in close geometric proximity. The reactant and 

substrate must be close enough for sometime at the interactive distance, furnishing the 

primary source of the site specificity. The lifetime of the excited state containing two 

unpaired electrons which is much longer than that of the single state. The triplet state 

usually lasts for 80-120 ps in the absence of an abstractable proton, but the lifetime 

might be 100 times shorter in the presence of a suitably oriented C-H bond.[144, 145] 

 

 

 

Figure 1.17 Schematic representation for the formation of C-C bonds by benzophenone 

chemistry. Adapted from [144] 
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1.13 Effect of Additives on the Phase Transition Behavior of Responsive 

Polymers 

1.13.1 Effect of Solvent on Phase Transition of Poly(NIPAAm) 

Poly(NIPAAm) is soluble in water and most organic solvents like terahydrofuran 

(THF),acetone, dimethyl sulfoxide (DMSO). Chloroform, dioxane (DO), 

methylethylketone (MEK) and low molecular weight alcohols.[146-151] The addition of 

organic solvents seem to depress LCST first and then subsequently increase it.  

 

For instance, in a  methanol-water system, [146, 148, 150] methanol at a mole fraction 

χ M lower than 0.05,the  transition temperature Tt is unperturbed; for 0.05 < χ M < 0.35, 

the Tt decreases from 32°C to reach a minimum value of -7.5°C. As χ M > 0.35, Tt 

increases sharply; and above χ M 0.46, the polymer does not precipitate even in boiling 

solution. However, aqueous solutions containing appropriate amounts of methanol can 

be used to precipitate poly(NIPAAm) at room temperatures. The intra and interchain 

hydrogen bonding of poly(NIPAAm)  and the intermolecular hydrogen bonding 

interactions between poly(NIPAAm) and solvent molecules by using FTIR reveal that in 

the C–H stretching region, both the N-isopropyl group and the polymer backbone 

undergo drastic  conformational change upon the solvent composition. It was found that 

the amide I was mainly involved in intermolecular hydrogen bonding with water 

molecules, with the polymer chains being both flexible and disordered in a mixed solvent 

system when the volume fraction of the added methanol was below 15%. When the 

volume fraction was between 15-65%, the intermolecular hydrogen bonding was 

gradually replaced by interchain and intrachain hydrogen bonding between the polymer 

and causes the polymer to aggregate. When the volume fraction is higher that 65%, the 
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interchain hydrogen bonding became predominant due to the higher concentration of  

methanol and results in PNIPA system becoming homogeneous solution again.[152]  

 

Another example of cononsolvency is Poly(NIPAAm) in water-dimethylformaide (DMF) 

where the transition was found to be continuous and dependent on both temperature 

and cross-link density. [151]. PNIPA gels solvated in acetonitrile (AcN)–water, THF-

water, and DO-water mixtures showed a “reentrant-convex” type of swelling. Herein, the 

gels reswelled after reentrant phase transition for a low mole fraction χ M of AcN, THF, 

and DO. At intermediate χ M the poly(NIPAAm) gels showed a maximum swelling and  

shrank again gradually in the high χ M regime.[146] The biphasic response of phase 

transition of polymer in mixed solvents is important not only in interpreting the role of 

hydrophobic and hydrogen bonding effects on phase transition but also find relevance in 

biological processes like protein aggregation.[146] 

 

The mechanism of cononsolvency can be explained in terms of breakage of hydrogen 

bonds between water molecules arranged in a tetrahedral lattice about the alcohol in a 

water-alcohol mixture. This phenomenon is called clathrate-hydrate formation.[153] In 

pure aqueous systems, water molecules assumes a’ icelike’ structured arrangement 

around hydrophobic isopropyl groups and forms hydrogen bonds with the amide 

residues of the poly(NIPAAm) segments.  

 

The addition of alcohol would result in the formation of clathrate hydrates by removing 

water molecules solvating poly(NIPAAm). This process not only breaks hydrogen bonds 

but also favors greater hydrophobic interactions between the isopropyl moieties resulting 

in the shrinkage of the polymer network. At higher volume fractions of the alcohol, water 
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forming clathrate structure diminish enabling direct interaction of alcohol with 

poly(NIPAAm).This process increases polymer-solvent interactions and subsequently 

results in the swelling of poly(NIPAAm). [146] 

 

1.13.2 Role of Surfactants on Phase Transition of Poly(NIPAAm) 

Surfactants like sodium dodecyl sulphate (SDS) used to alter the phase transition 

temperature of poly(NIPAAm).  Eliassaf and co-workers[154] reported that 1% SDS 

increases the viscosity of poly(NIPAAm) solution thus inhibiting the precipitation of the 

polymer even at boiling temperatures. 

 

The general consensus is that the phase transition temperature Tt of poly(NIPAAm) 

increases with an increase in SDS concentration C in the solution. This Change in phase 

transition seems to fall into three regimes.[146] 

 

1. When C < 10 μM: the no-interaction regime Tt remains unchanged. 

2. At 10 μM > C < 0.79 mM: the abnormal regime at SDS concentration above Tt 

remains unchanged, but the polymer does not precipitate above Tt. 

3. C > 0.79 mM: Tt increases with SDS concentration. 

 

At a concentration below 10 μM, the SDS concentration is too low to induce any 

changes to Tt. As the SDS concentration increases, there is greater interaction between 

the polymer segments and SDS enhancing solubility without actually changing Tt. The 

polymer segments remain unimolecularly dispersed even above Tt. This process has 

been described as intermolecular solubilization.[146]  
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A variety of techniques including small-angle neutron scattering, [155] static and 

dynamic light scattering,[156] and conductometric measurements,[157] have been 

employed to investigate the conformational details  of poly(NIPAAm) with different SDS 

concentration at temperatures. In all these studies, the transition temperature in the 

presence of SDS was found to be relatively independent of polymer concentration, 

polydispersity, and molecular weight of the sample. This suggests that the transition is 

governed more by local short range interactions.[146]  

 

The role of other surfactants has also been investigated. Schild and co-workers[158] and 

Sakai and co-workers [159]carried out experiments on sodium n-alkylsulfonates ranging 

from methyl to n-hexadecyl. They have most cases found identical results with respect to 

the role of different surfactants on Tt. Sakai and co-workers reported that surfactants 

with chain length up to n = 8, and even at a concentration as high as 100 mM, have 

practically no effect on the Tt. On further increase in chain length, Tt increased with 

increase in surface concentration.  

 

Schild, [160] in his PhD work investigated the role of different cationic and nonionic head 

groups, with C12H25 tail as the hydrophobic part. It was seen that for poly(NIPAAm) and  

dodecyltrimethylammonium bromide (DTAB), the surfactant binding takes place  near 

the CMC. However,  in the case of nonionic Triton X-100, interaction appears to exist 

above critical micelle concentration (CMC) and for the Zwittergent 3-12, micellization 

was unaffected by poly(NIPAAm). Wu and Zhou[161]  compared the effect of cationic 

dodecylpyridine bromide (DPB). They concluded that the attraction between DPB and 

the amide group reduces hydrophilicity of the gel network and hence shifts the transition 

to a lower temperature compared to SDS.[146] 
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It can be concluded that the effect of surfactants on Tt increases in the order nonionic < 

cationic < anionic which forms a general order for the adsorption of surfactants on 

polymers. For linear alkyl sulfonates, the Tt increases with increase in alkyl chain length. 

However, for identical chain lengths, the variation in Tt depends on the chemical nature 

of the head group. Though this behavior is attributed to differential adsorption on to 

poly(NIPAAm), the reasons governing such adsorptions still remain unclear.[146] 

 

1.13.3 Effect of Salts on the Phase Transition of Poly(NIPAAm) 
 
The general observation is that neutral salts can considerably alter the solution 

properties of macromolecules such as solubility, precipitation temperature and viscosity. 

The nature of individual ions determines to what extent these changes are manifested. 

[162, 163]It is believed that the effect of different ions on the stability and solution 

properties generally believed to follow the Hofmeister series, which ranks the various 

salts on their ability to salt out, in other words to precipitate proteins from aqueous 

solutions.[164, 165]The effect of the Hofmeister series of salts is more pronounced for 

anions than cations and is quite general. The typical order for the anion series is as 

follows: [6, 146] 

 

CO 3
2- > SO 42− > S2O3

2− > H2PO − 4 > F − > Cl − > Br− ∼ NO3
− > I− > ClO4

 − > SCN−. 

 

Ions on the left of the series are called kosmotropes, which tend to precipitate proteins 

out of the solution and prevent protein unfolding and is called the salting out effect 

whereas ions on the right are chaotropes, generally increase solubility and promote the 

denaturation of proteins and is called the salting in effect. Chloride is usually considered 

the dividing line between these two types of behavior and more or less exhibits both 

behaviors.[6] 
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Poly(NIPAAm) hydrogels exhibit a decrease in gel volume with an increase in salt 

concentration. The poly(NIPAAm) completely collapse  at high salt concentrations with 

the transition being discontinuous or continuous depending on the type of salt employed. 

Linear poly(NIPAAm) solutions show a similar trend with an decrease in Tt with a 

corresponding increase in salt concentration.[146] 

 

The following conclusions can be drawn:[146]  

1. Generally almost all inorganic salts lower the Tt. This decrease shows a linear 

dependence with concentration. 

2. The salts can be ranked based on a reduction in their transition temperature can 

be ranked according to the Hofmeister series which list salts on their ability to 

precipitate proteins out of solution. The order is as follows: NaI < KI < LiCl < NaBr 

∼ KBr < MgCl2 < NaCl ∼ KCl ∼ CsCl < RbCl < CaCl2 < SrCl2 < BaCl2 < NaOH ∼ 

KOH < NaF ∼ KF < LiSO4 < MgSO4 < K2SO4 < K2CO3 ∼ NaCO3 < Na2P2O7 ∼ 

Na3PO4 ∼ Na2SO4. 

3. The efficiency of cations to lower transition temperature is not as pronounced as 

anions. [6] For anions, the efficiency of lowering Tt follows the ranking I- < Br- < 

Cl- < F-, while the remaining are almost independent of the cation except Li+.[166] 

However, Tt shows a small dependence for certain divalent cations Mg2+ < Ca2+ < 

Sr2+ < Ba2+, which is in the reverse order of their ionic radius.[166] 

4. It is seen that all salts do not lower the Tt in the same manner. Salts of Cl- and Br-

, bring about a discontinuous change in the gel volume, whereas salts of I- and F- 

induce a more continuous volume change.  
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5. Tetraalkylammonium ions are unique in that they do not follow any particular 

trend. The tetraalkylammonium bromide salts follow the order (C3H7)4NBr < 

(C2H9)4NBr < (C4H9)4NBr < (CH3)4NBr < H4NBr < (C5H11)4NBr.[167, 168]  

6. Salts of organic acids also do not stick to any particular trend and the sodium 

salts follow the order as follows C6H5COONa < HCOONa < CH3COONa.[166] 

 

Specific interactions polymer-polymer, polymer-water, polymer-ion, and water-ion 

interactions should be considered to investigate the role of salts on transition 

temperature. Poly(NIPAAm), an isomer of poly(isoleucine), consists of a hydrocarbon 

backbone with a pendant amide group. Above its LCST, it rapidly precipitates or 

collapses to form compact globule structures.[33, 34, 36, 102]  

 

The influence of Hofmeister anions on the polymer and the hydration water can be 

explained by three different interactions. First, the anions can polarize adjacent water 

molecules involved in hydrogen bonding with the amide moieties. Second, these species 

can interfere with the hydrophobic hydration of the polymer by increasing the surface 

tension of the surrounding areas near the polymer backbone and the isopropyl side 

chains. Third, the anions may bind directly to the amide moieties. The first and second 

interactions seem to bring about salting out effect in the polymer and the third 

interactions causes the salting in effect in the polymer.[4-6, 46] 

 

Figure 1.18 represents a schematic representation of the interaction of salts with 

poly(NIPAAm) The hydrophobic collapse of poly(NIPAAm) can be explained on the basis 

of a direct interaction of the anions with the polymer and its first hydration.[4, 5]  
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Figure 1.18 Schematic representation of the interaction of Hofmeister anions with 

poly(NIPAAm). Adapted from [4] 

 

1.13.4 Effect of Salts on the Hydrophobic Groups  

Anions can interact with the hydrophobic hydration of poly(NIPAAm) by increasing the 

surface tension at the hydrophobic-aqueous interface.[6] It is seen that with an increase 

in the salt concentration, the surface tension also increases at the polymer-aqueous 

interface. [169, 170] A two step transition is also seen in the case of poly(NIPAAm) 

solvated in Na2SO4 wherein, the first step of the two-step phase transition in the 

presence of salting out salts  results from the perturbation of water molecules hydrogen-

bonded to the amide moieties, whereas the second step involves the dehydration of the 

hydrophobic portion of poly(NIPAAm).[4, 5] Though concentrated salt solutions can 

destabilize the hydrophobic groups, it has also been seen that this fact alone might not 

be sufficient enough to explain their role in altering the transition temperature. For 

instance, the effect of salts on the activity coefficients of trimethyl amine, having 
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somewhat similar structure as the pendent isopropyl group in poly(NIPAAm) , in 

aqueous solution follows the following order:[171] 

 

LiCl < NaI < KI < SrCl2 < NaBr < KBr < NaCl < KCl < Na2SO4 < K2SO4 

 

This order is very similar to the effect of salts on poly(NIPAAm). However, the fact that 

the activity co-efficient’s are very sensitive to the non-polar groups due to the nature of 

cations, while the effect of cations on poly(NIPAAm) seem insignificant. Moreover, the 

abrupt changes in the gel volume at the transition temperature due to an increase in the 

salt concentration cannot be fully explained by the salting out of the non-polar groups in 

poly(NIPAAm) because the activity coefficients change linearly with the salt 

concentration in almost all cases. [146] 

 

1.13.5 Interaction of Salts with Water Structure  

Hofmeister anions can polarize a water molecule that is directly involved in hydrogen 

bonding with the amide the moieties as shown in figure 1 19. The hydration entropy 

ΔShyd  is a quantitative measure of the ability of an anion to polarize the first hydration 

shell of water around the polymer.[6]  

 

Cremer and co-workers[4] have studied specific effects of different ions on 

poly(NIPAAm) using vibrational sum frequency spectroscopy (VSFS). They have shown 

weak OH peaks in the absence of salts. The addition of chaotropic anions seems to 

make the OH peaks more prominent. SCN−, the most chaotropic anion, induced the 

greatest water-peak intensity, whereas SO4
2−, the most kosmotropic species seem to 

have no influence on the nature of the water peaks. They concluded that the water 
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structure was ion dependent and the intensities of the OH peaks which usually occurs in 

the region 3200cm-1-3400cm-1 followed the following Hofmeister series. 

SCN− > ClO4
− > I− > NO3 

− ≈ Br− > Cl− > pure water ≈ F− ≈ SO4
2−  

A simple model proposed by Frank and co-workers[172] suggesting that small and 

polyvalent ion will be a structure maker whereas large monovalent ion should be 

structure breaker was adapted by Saito and co-workers[167] who studied the viscosity B 

coefficient (VBC) of salts. It was suggested that structure makers will have a positive 

(VBC)[173, 174] value and would increase hydrophobic interaction which would 

subsequently bring about a decrease Tt of Poy(NIPAAm).[167, 168, 175] On the other 

hand, structure breakers could increase the Tt by increasing the hydrophobic hydration. 

The unitary partial molar entropy, which takes into account both the characteristics of the 

species and its interaction with the salt solution, is another interesting route to 

understand water structure. [146, 176] 

 

Both VBC and unitary partial molar entropy of the solution of a salt show differences for 

cations Na+, K+, and Cs+ which are atleast quantitatively as large as those in the anionic 

series Cl-, Br- and I-. Hence, it’s possible to conclude that both cations and anions should 

have similar effects on Tt. However, it is seen that the ability of cations to influence the Tt 

is quite small. Among alkali metal cations, Li+ is the smallest and Cs+ the largest. 

Another discrepancy would be that though Li+ an alkali cation smallest in size should be 

a structure-maker series and the most efficient in lowering Tt, and Cs+, the largest cation 

should have minimal role in Tt. However, Li+ has the least ability to lower Tt, whereas Cs+ 

is similar to K+ and Na+.[146, 172] 
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1.13.6 Direct Interaction of Salts with Amide Groups  

Cremer and co-workers have shown strongly and weakly hydrated anions affect the 

LCST of poly(NIPAAm) by different mechanisms.[4, 5] The surface tension causing the 

hydrophobic collapse and also brings about a decrease in the transition temperature for 

chaotropes. For kosmotropic ions, both the polarization of hydration shell of water 

molecules and surface-tension are both play a role. Specifically, the first step of the two-

step phase transition process in the presence of kosmotropes is due to the perturbation 

of solvation waters that are hydrogen-bonded to the amide moieties, whereas the 

second step involves the dehydration of the hydrophobic portion of PNIPAM. The direct 

ion binding is a saturation process leading to salting-in of poly(NIPAAm). But Cl− and 

other kosmotropes do not show any binding to the polymer. It was seen that changes in 

the molecular weight of poly(NIPAAm) had some influence on its interaction  with salts, 

however the general trend of the overall process was very similar for different molecular 

weights. [5] [146]  

 

Von Hippel and co-workers [177]  investigated the nature of binding of different salts with 

amide moieties  and non-polar groups using the technique of recycling chromatography 

with poly(acrylamide) (PAAm)  and poly(styrene) (PS) columns. They showed that 

neutral salts bind to PAAm with similar effect to their ranking in the Hofmeister series. It 

was seen that none of the salts bind to the PS matrix alluded to the fact that the main 

binding site on PAAm is the amide moieties. It is also seen that cage-like water 

structures around the hydrophobic groups were found to non-rigid and permitted ion 

movement ruling out the possibility of selective ion screening by the hydration layer.[177] 

It has also been shown that a methyl group attached to amide carbon has fractionally 

larger contribution toward ion-binding specificity than a methyl group attached to the 

amide nitrogen.[178] We can thus arrive at the conclusion that ions should bind to the 
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amide moieties of poly(NIPAAm) with the same specificity as in PAAm. The relative 

binding of the salts to PAAm gel follows the following order:[146, 177] 

 

NaF < Na2SO4 < KCl < NaCl, RbCl < CsCl, LiCl < NaBr < NaNO3< MgCl2 < CaCl2, BaCl2, 

NaSCN < NaI 

 

However, this ranking of ion binding to amide group do not match up with respect to their 

effectiveness in perturbing the Tt.[146]   

 

1.14 Peptide Modified Responsive Surfaces  

Surfaces that change properties in response to local environmental stimuli are 

increasingly being studied for biomedical applications. Recently, embedding specific 

peptide sequences have aided in better understanding in the nature of stimuli 

responsiveness in smart materials.[7] Peptides can undergo conformational changes 

due to changes in temperature, pH and specific binding behavior. Protein or peptide 

based hydrogels containing protein domains may self-assemble from block or graft 

copolymers containing biorecognition domains. Stimuli-responsive peptides can also be 

coupled with synthetic polymers to create stimuli-sensitive hybrid systems.[7-10]  

 

One of the most popular stimuli responsive peptides is a peptameric sequence VPGVG 

belonging to the elastin-like polypeptide (ELP) family. The fourth residue of this 

pentamer is a guest residue which  can be substituted with any amino acid except 

proline to alter the physicochemical properties of the ELP.[179] The pentamer exhibits a 

sharp reversible hydrophilic-hydrophobic transition know as the transition temperature Tt 

which can be triggered by temperature, pH or ionic strength. Similar to responsive 

polymers like poly(NIPAAm), ELP’s exists in an extended conformation at temperatures 
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below Tt being completely soluble in water, while at temperatures above Tt, it collapses 

into a ordered β-spiral that aggregates and subsequently precipitates out of 

solution.[180-184] This particular property of ELP’s has been applied to develop various 

routes for purification of biomolecules. 

 

It has been shown that fusing ELP’s to protein followed by a temperature-induced 

precipitation process, termed as inverse transition cycling, was used to purify numerous 

recombinantly expressed proteins. [179, 185-188] ELP’s fused to protein have also been 

used in the remediation of toxic metals[189] and targeted drug delivery by selective 

aggregation of drugs or alternately through thermal activation of drug-bearing cell 

penetrating peptides in hyperthermic tumors.[190-193] 

 

Wang and coworkers[9] have engineered a hybrid hydrogel by synthesizing a  

copolymer of N-(2-hydroxypropyl)-methacrylamide (HPMA)13, and a metal-chelating 

monomer N-(N’,N’-dicarboxymethylaminopropyl)methacrylamide (DAMA), by radical 

copolymerization. This was then coupled to two His-tagged coiled coils were used to 

assemble hybrid hydrogels. Hydrogels with these features offers the possibility of 

exhibiting unique biological properties by tailoring the coiled coils, for instance  coiled 

coils with different Tt values could be used to assemble hybrid hydrogels that would 

display accordingly different gel structural transition temperatures. Another example 

would be to use two or more coiled coils can be used together to achieve stepwise 

transition which would be hard in the case of synthetic polymers.  
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1.14.1 Solid Phase Peptide Synthesis 

The Merrifield solid phase peptide synthesis is a popular route to engineer peptide 

sequences anchored to a solid support.[194] This technique involves the addition of the 

first amino acid of the targeted peptide chain to a solid support via covalent bonding. 

Subsequent addition of amino acids is then brought about in a stepwise manner until the 

desired peptide sequence is achieved. A critical advantage with this method is use of 

solvents to wash away impurities rather than using recrystallization methods which are 

both time consuming and tedious. This greatly simplifies the synthesis scheme and 

shortens the reaction time required for the synthesis of the peptides. [194] 

 

1.14.2 Fmoc -Solid Phase Peptide Synthesis 

Fmoc based solid phase peptide synthesis is based on using an orthogonal protecting 

group using the base labile N-9-fluorenylmethoxycarbonyl (Fmoc) for protecting the α-

amino group and acid labile / tert-butyl (tBu) for protecting the side chain groups. This 

method is slightly different from the Merrifield approach which uses acidolysis to remove 

both temporary and permanent groups protecting the peptides.[194] Fmoc chemistry 

allows removal of both temporary and permanent protecting groups through different 

chemical mechanisms employing milder chemicals compared to Merrifield approach. 

Both tBu and trityl based side chain protection can be easily removed using 

trifluoroacetic acid (TFA). TFA is an excellent solvent for peptides which is readily 

removed by evaporation.   

 

The reaction scheme for peptide conjugation is as shown in figure 1.19. Fmoc protected 

amino acids are attached to the resin/polymer gel in DMF or N-methylpyrrolidone (NMP) 

either with preformed esters or using activation reagents that generate benzotriazolyl 

esters in situ. The side chain functionalities are protected by TFA labile protecting 
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groups. Deprotection of the Fmoc head groups after successful coupling of the amino 

acids is brought about using 20% Piperidine. While deprotection with Piperidine is 

effective in most cases, sometimes it becomes necessary to use 1,8-

diazabicyclo(5.4.0)undec-7-ene (DBU) which causes rapid deprotection and less 

enantiomerization, when Piperidine is found to be ineffective in bringing about complete 

deprotection.  

 

 

 

 

Figure 1.19 Schematic representation of peptide conjugation to poly(NIPAAm) gels by 

Fmoc solid phase peptide synthesis. 
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1.14.3 Fmoc Deprotection Mechanism 

Fmoc deprotection is usually achieved by adding 20-50% v/v piperidine in DMF to the 

reacting mixture. The mechanism of the deprotection process is shown in figure 1.20. 

The most important step in the deprotection process is the deprotonation of the flurene 

ring in order to generate aromatic cyclopentadiene type intermediate. This quickly 

eliminates to form dibenzofulvene which is in turn scavenged by piperidine. While 

piperidine is effective in most cases, longer peptide sequences are not completely 

deprotected even in the presence of high Piperidine concentrations. In such cases, the 

use of a stronger base like 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) can be employed 

for better results.[195] DBU provides rapid deprotection and reduces enantiomerization 

of the resin bound C-terminal Cys(Trt). In batch synthesis, DBU along with 2% Piperidine 

results in better scavenging of the dibenzofulvene which is generated during the Fmoc 

removal process and thus prevents any subsequent alkylation of the resin amino 

groups.[196, 197] 

 
 

Figure 1.20 Reaction scheme for Fmoc deprotection. 
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1.14.4 Limitations of Fmoc Chemistry 

Fmoc peptide synthesis process involves many complex chemical reactions that can 

affect the success of the growing chain assembly of peptides. Aggregation during chain 

assembly in a common occurrence for peptide sequences of more than 50 residues. As 

chain length increases, the separation of the peptide from the byproducts becomes 

increasingly difficult.  To overcome these difficulties, methods involving chemoselective 

ligation, wherein smaller peptides are coupled together in aqueous solutions can be 

employed. Another popular alternative is to use chemoselective purification techniques 

which enable chemical tagging of the peptides helping in their separation. [197] 
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2 CHAPTER 2: EXPERIMENTAL PROCEDURES 
2.1 Materials  

N-isopropylacrylamide (NIPAAm), Diethylacrylamide (DEA),  4-hydroxybenzophenone, 

methacroyl chloride, triethylamine, acetone, D2O (99.9 atom %), azobisisobutyronitrile 

(AIBN), hexanes, diethylether and 3-aminopropyl triethoxysilane were purchased from 

Sigma. Acetone was distilled from calcium hydride before use and NIPAAm was 

recrystallized from hexanes. All other chemicals were used as received. 

 

2.2 Synthesis of Methacryloxybenzophenone (MaBP) 

Methacroylbenzophenone (MaBP) was synthesized from 4-hydroxybenzophenone and 

methacroyl chloride in dry acetone at 0 °C. Triethylamine (TEA) was used as the acid 

scavenger. A 1:1:2 mole ratio of 4-hydroxybenzophenone, methacroyl chloride was 

added to dry acetone and TEA. The reaction was run for 5 hours and the product was 

purified by running it through a column using benzene as the solvent and silica gel as 

the stationary phase. The monomer was subsequently dried under vacuum. The 

monomer yield was around 85% MaBP. The reaction scheme is as shown in figure 2.1. 
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OH ClO O
O

O

+ 0oC, 5 hrs

Acetone
 

 

  4-Hydroxybenzophenone   Methacroyl chloride    Methacroyloxybenzophenone            

 

Figure 2.1 Synthesis of methacroyloxybenzophenone (MaBP) 

 

2.3 Characterization of Methacryloxybenzophenone (MaBP) 

MaBP characterized with an INOVA 400 NMR spectrometer. The spectrum had typical 

aromatic peaks (multiplet) at 7.2-8.0 with 9 protons associated with the aromatic 

benzophenone ring  and a singlet at 2.1 representing the methyl group characteristic of 

MaBP. 

 

Figure 2.2 1H NMR spectrum of MaBP in CdCl3.  
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2.4 Synthesis of N-(benzophenone)methacrylamide (NBPMA) 

N-(benzophenone) methacrylamide (BPMA) was synthesized from 4-

aminobenzophenone and methacroyl chloride in dry acetone at 0 °C. Triethylamine 

(TEA) was used as the acid scavenger. Both acetone and TEA were distilled before use. 

A 1:1:2 ratio of 4- aminobenzophenone, methaacryol chloride and TEA was used for the 

synthesis dissolved in acetone. 

 

The reacted product was run through a column using benzene as the solvent and silica 

gel as the stationary phase. The monomer was subsequently dried under vacuum. The 

monomer yield was around 85% MaBP. The reaction scheme is as shown in figure 2.3. 

 

O

ClO
N

O

O

H2N
H

+
0oC, 5.5Hrs

Acetone

 
 

 

  4-aminobenzophenone     Methacroyl chloride                         (NBPMA) 

 

Figure 2.3 Synthesis of N-benzophenone(methacrylamide) (NBPMA). 

 

2.5 Characterization of N-benzophenone(methacrylamide) (NBPMA) 

NBPMA was characterized with an INOVA 400 NMR spectrometer. The spectrum had 

typical aromatic peaks (multiplet) at 7.2-8.0 with 9 protons associated with the aromatic 

benzophenone ring and a singlet at 2.1 representing the methyl group characteristic of 

NBPMA shown in figure 2.4. 
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Figure 2.4 1H NMR spectrum of NBPMA in CdCl3. 

 

2.6 Polymer Synthesis and Characterization 

2.6.1 Synthesis of Poly(NIPAAm-co-MaBP) Polymers 

Poly(NIPAAm-co-MaBP) was copolymerized with x  mol% MaBP (x=1%, 3%, 5% and 

10%) using 0.1% AIBN as the initiator. The reaction was carried out for 18 hours at 65oC 

in dioxane under nitrogen. The sample was degassed with nitrogen by freeze and thaw 

cycles prior to the reaction. After completion, the polymer was precipitated in diethyl 

ether. The polymer yield was around 88%.The reaction scheme is shown in figure 2.5. 
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Figure 2.5 Synthesis of poly(NIPAAm-co-MaBP(x)) with varying mole % of  amounts of 

MaBP.(x= 1%, 3%, 5%, and 10% ) 

 

2.6.2 Characterization of Poly(NIPAAm-MaBP) 

The 1H NMR (CDCl3, δ: 1.0 (s CH3) ppm; 4.0 (s NH); 7.2-8.0 (m 9H of aromatic group) 

ppm spectrum for poly(NIPAAm-MaBP(3%) is shown in Figure 2.6. The NH peak at 

4.0(s) ppm and methyl group at 1.0 ppm are characteristic of NIPAAm. The peaks in the 

inset between 7.2-8.0(m) ppm show the aromatic groups of MaBP. The NMR spectrum 

showed complete incorporation of the MaBP groups. NMR analysis were similarly 

conducted on all samples with MaBP varying from 1%-10% to confirm incorporation of 

MaBP into the polymer. The aromatic peaks between 7.2-8.0 ppm increase in intensity 

as the MaBP content increases to 10%. The actual percentage of MaBP was calculated 

from the integration of the CH peaks of the aromatic group and the integration CH peaks 

of the isopropyl group of NIPAAm in the NMR spectrum with an error estimate of 5%.  
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Figure 2.6 1H NMR spectrum of poly(NIPAAm-co-MaBP(3%)) in CdCl3. 

 

2.6.3 Molecular Weight Determination 

The number average molecular weight and polydispersity index is shown in table 1. GPC 

on all samples were performed by Viscotek TM using RI, VIS, RALS, and LALS with good 

signal-to-noise from all detectors. Molecular weights were determined by the triple 

detection method. Table 2 lists the molecular weight distribution and polydispersity index 

for poly(NIPAAm-MaBP). 
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Table 2.1. Physical characteristics of poly(NIPAAm-co-MaBP) 

 

Feed (MaBP) Actual (MaBP) Mn Mw/Mn 

1.0 mol% 

3.0 mol% 

5.0 mol% 

10.0 mol% 

1.0 mol% 

3.0 mol% 

4.9 mol% 

9.8 mol% 

36,683 g/mol 

42,830 g/mol 

75,374 g/mole 

96,241 g/mole 

3.94 

4.70 

2.55 

2.43 

 

 

2.6.4 Synthesis of Poly(diethylacrylamide-co-MaBP) (Poly(DEA-co-MaBP)) Polymers 

Poly(DEA-co-MaBP) was copolymerized with 3  mol% MaBP using 0.1% AIBN as the 

initiator. The reaction was carried out for 18 hours at 65oC in dioxane under nitrogen. 

The sample was degassed with nitrogen by freeze and thaw cycles prior to the reaction. 

After completion, the polymer was precipitated in diethyl ether. The polymer yield was 

around 86%. The reaction scheme is as shown in figure 2.7. 
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Figure 2.7 Synthesis of poly(DEA-co-MaBP) 
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2.6.5 Characterization of Poly(DEA-co-MaBP) 

 
 
 

 
 

Figure 2.8 1H NMR spectrum of poly(DEA-co-MaBP(3%)) in CdCl3. 

 

2.6.6 Synthesis of Poly(NIPAAm-co-3-aminopropylmethacrylamide-co-NBPMA) 

Poly(NIPAAm-co-3-APMA-co-MaBP) Polymers 

Poly(NIPAAm-co-3-APMA-co-MaBP) was copolymerized with 2 mol% 3-APMA and 3 

mol % MaBP  using 0.1% AIBN as the initiator. The reaction was carried out for 18 hours 

at 70oC in DMF under nitrogen. The sample was degassed with nitrogen by freeze and 

thaw cycles prior to the reaction. After completion, the polymer was precipitated in 

diethyl ether. The polymer yield was around 78%. The reaction scheme is as shown in 

figure 2.9. 
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Figure 2.9 Synthesis of poly(NIPAAm-co-3-APMA-co-MaBP). 

 

2.6.7 Characterization of Poly(NIPAAm-co-3-APMA-co-MaBP) 

 
 

 
 

Figure 2.101 H NMR spectrum of poly(NIPAAm-co-3-APMA(2%)-co-MaBP(3%)) in 

CdCl3. 
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2.7 Determination of Demixing Temperature 

The sample was placed in a temperature-controlled solution cell. The temperature was 

ramped at 0.2°C/min in the temperature range between 15 to 60°C. The turbidity of the 

samples was followed during heating by monitoring the scattered light intensity at an 

angle of approximately 45°. The demixing temperature was taken at the point where the 

scattered intensity increased by 10%. In all cases, the temperature range over which the 

scattered intensity changed was approximately 1oC. 

 

2.8 Preparation of Surface Tethered Poly(NIPAAm) Photo-Cross-Linked 

Networks by Spin-Coating 

Substrates (either quartz or silicon) were cleaned with ozone to remove any organic 

impurities followed by deposition in a 1% solution of 3-aminopropyltriethoxysilane in 

acetone. The substrates were heated to 100oC to drive condensation of the silane 

groups to the substrate surface.  A solution of poly(NIPAAm-co-MaBP) in cyclohexanone 

was spin cast on the freshly prepared substrate. Cross-linking was accomplished by 

exposing the film to UV light (365 nm) for 30 minutes. Figure 2.11 shows a schematic 

representation of the spin casting process of depositing the benzophenone modified 

poly(NIPAAm-co-MaBP) polymers  onto quartz or silica substrates. Figure 2.12 shows 

reaction scheme for the photochemical cross-linking of poly(NIPAAm). 
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Figure 2.11 Schematic representation of the spin casting process of photochemically 

modified poly(NIPAAm-co-MaBP) networks to quartz or silica substrates. 
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Figure 2.12 Photochemical cross-linking of poly(NIPAAm-co-MaBP). 

 

2.9 General Procedure of Peptide Conjugation to Poly(NIPAAm) Hydrogels 

1. Poly(NIPAAm) hydrogels was synthesized by adding 200mg of NIPAAm 

monomer, 3 mole% of NBPMA and appropriate amount of 3-APMA(2 and 10 

mole%) to 1ml of DMF and photo-cross-link using UV irradiation. 

2. Poly(NIPAAm) gels were then cut into small pieces and transferred to a peptide 

reaction vessel and washed thoroughly with DMF to remove unreacted 

monomers. 
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3. Prepare the appropriate Fmoc protected amino acid by adding excess (4 times 

the mole % of 3-APMA) of the amino acid to the reaction mixture containing the 

sample hydrogels. 

 

2.10 Kaiser Test or Ninhydrin Test 

The Kaiser test was done to monitor the presence or absence of free amine groups in 

the sample hydrogel. The addition of amino acids was also subsequently tested using 

the Kaiser test for the presence or absence of a free amine group. 

The Kaiser test kit consists of phenol (80% in ethanol), KCN in water/pyridine and 

ninhydrin (6% in ethanol). 

The test procedure is as follows: 

1. Remove a few gels from the reaction vessel prewashed with DMF. 

2. Transfer the gels into a small glass test tube and add 3 drops of phenol, KCN 

and ninhydrin to each test tube containing the sample gels. 

3. Mix well and heat the test-tube at 120°C for 5 minutes. 

4. Blue/violet color indicates the presence of a free amine group in the hydrogel 

whereas a yellow/orange color indicates the absence of a free amine group in the 

sample hydrogel. 

 

2.11 Synthesis of Poly(NIPAAm-co-NBPMA-co-3-APMA)- GEGVP Conjugates 

Poly(NIPAAm-co-NBPMA-co-3-APMA) hydrogels were cut into small pieces and 

transferred to a peptide reaction vessel. Glycine (G) Glutamic acid (E),Valine (V) and 

Proline (P) are added in the ratio of 4:1 with respect to 3-APMA and subsequently 

conjugated to the hydrogels using Fmoc based peptide synthesis. The addition of each 

amino acid and the subsequent removal of the Fmoc group was verified by the Kaiser 
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test which tests positive for the presence of a free amine group by turning the gel and 

the reaction mixture blue and tests negative in the absence of a free amine group by 

remaining colorless or pale yellow. 

 

2.12 Synthesis of Poly(NIPAAm-co-NBPMA-co3-APMA)-GGH Conjugates 

Poly(NIPAAm-co-NBPMA-co-3-APMA) hydrogels were cut into small pieces and 

transferred to a peptide reaction vessel. Glycine (G) and Histidine (H) are added in the 

ratio of 4:1 with respect to 3-APMA and subsequently conjugated to the hydrogels using 

Fmoc based peptide synthesis to get the desired peptide sequence. The Kaiser test was 

then performed as mentioned in section 2.7 to verify the coupling of the amino acids to 

the NIPAAm hydrogels. 

 

2.13 Instrumentation 

2.13.1 Neutron Reflection 

Neutron reflection was used to characterize and study the swelling behavior of the 

poly(NIPAAm-co-MaBP) films.[198, 199] Neutron reflectometry is a powerful 

experimental technique used to investigate the structure of thin films. A neutron beam 

can be elastically scattered of a flat sample interface giving us vital information about the 

thickness, roughness, coverage, and material composition details of a sample layer 

perpendicular to the reflecting surface. Each neutron can be seen as a wave with a 

wavelength corresponding to its momentum. This relationship is defined by the de 

Broglie formula given as: 

 

         λ= h/p                                                                 (2.1) 
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where p is the neutron's momentum, λ is the neutron's wavelength, and h is the Planck’s 

constant. 

Constructive interference between neutron waves occurs there is a difference in the 

refractive index of the materials and can be calculated using Bragg’s law.  

 

 nλ = 2d sin(θ) (2.2) 

 

where λ is the neutron's wavelength, θ is the neutron's incident angle, and d is the 

distance between layers in the sample. 

 

 

 

Figure 2.13 Schematic representation of neutron reflectivity. 

 

The neutron reflectivity measurements were carried out on the Surface Profile Analysis 

Reflectometer (SPEAR, Manuel Lujan, Jr. Neutron Scattering Center, Los Alamos 

National Laboratory). SPEAR is a time-of-flight (TOF) reflectometer employing a 

polychromatic, pulsed neutron source. The basic principle of neutron reflectometry 
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involves directing a collimated neutron beam towards a flat interface at a low incidence 

angle, θ, and measuring the ratio of reflected intensity to incident intensity, R, as a 

function of momentum transfer vector qz = 4πsin θ /λ, where λ is the neutron wavelength. 

The schematic representation of a typical neutron reflection setup is as shown in figure 

2.13. The range of neutron wavelengths used in the experiments was 1–16 Å, 

determined by the TOF technique. We used two experimental configurations: (i) for 

measurements in the dry state and against vapors the neutrons were entering quartz or 

Si substrates from the air (or vapor) side, and (ii) an “inverted” geometry with D2O 

(solvent) on the bottom and quartz (or silicon) substrate above the solid-liquid interface. 

The lower medium has a higher scattering length density than the upper one. Under 

these conditions, the reflectivity R =1 for qz below a critical value qc = 4π (ΔSLD)1/2, 

where ΔSLD is the scattering length density difference between the upper and lower 

media. Neutron reflectivity data collection typically lasted typically 3.5–4.5 hours. The 

reflectivity data were reduced using the incident neutron intensity spectrum. Based on 

measured data, a “model” reflectivity profile was generated using Parratt’s recursion 

formalism[200] and compared to the measured reflectivity profile. The model was then 

adjusted to obtain the best least-squares fit to the data using genetic optimization 

followed by Levenberg-Marquardt nonlinear least-squares method. 

 

2.13.2 Attenuated Total Reflection / Fourier Transform Infrared (ATR/FTIR) 

Spectroscopy 

IR spectroscopy is an extremely useful technique for investigating structural changes in 

a majority of proteins that cannot be studied by X-ray crystallography and NMR.[201] In 

particular, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) 

is one of the most powerful methods for recording IR spectra for both biological and 
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polymeric materials. It offers a fast and reliable signal even for very low sample 

concentrations. The samples of interest can be studied as a function of temperature, 

pressure, and pH, as well as in the presence of specific ligands.[201] 

 

In the present study, we have investigated the phase behavior of poly(NIPAAm) 

copolymers in water and D2O in order to reveal changes in the hydration states of 

NIPAAm during the phase transitions. Figure 2.14 shows a typical ATR-FTIR setup with 

a coating of poly(NIPAAm). By carefully controlling film thickness to be near the 

penetration depth of the IR beam, we can effectively block out any solvent peaks from 

the IR spectrum. 

 

 

 

 

Figure 2.14 Schematic representation of ATR-FTIR  

 

ATR-FTIR measurements on poly(NIPAAm-co-MaBP) were performed using a Nicolet 

6700 FTIR spectrometer equipped with a temperature controlled multibounce ATR ZnSe 

plate. The polymers dissolved in acetone were cast on to the ZnSe plate and heated to 

60°C for 2 hours to remove residual acetone. An FTIR spectrum was then performed to 
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determine that there was no residual acetone left in the polymer cast on the ZnSe plate. 

All FTIR measurements were done in the temperature range of 24°C-102°C in 

absorbance mode with 100 scans and a resolution of 4 cm-1. The spectral ranges for all 

scans were in the region between 4000-650 cm-1. The crystal background was 

subtracted from the samples for each run. 

 

The ATR correction can be used as follows.  A FTIR spectrum collected in the ATR 

mode is related to a spectrum collected by transmission mode by the following equation: 

 

SATR=k1*SCORR*DP                                                       (2.3) 

 

where SATR is the ATR spectrum 

           k1 is an arbitrary constant 

           SCORR is the corrected spectrum 

           Dp is the ATR penetration depth 

 

The penetration depth is given as 
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                                                      (2.4) 

 

where φ = effective angle of incidence. 

           nc = Refractive index of crystal. 

           ns = Refractive angle of sample. 

           λ = Wavelength. 
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For any given experiment, 

 
                                       DP =1/(k2*ν)                                                                 (2.5) 

 

where ν is the wavenumber and k2 is a constant related to the angle of incidence 

and refractive index of the sample and ATR crystal. 

 

In order to calculate the corrected spectrum, we have to calculate 

 

                                            SCORR = SATR/(DP*k1)                                                      (2.6) 

 

Also, 

 

                                           SCORR = SATR*ν/k                                                             (2.7) 

 

where k is an arbitrary constant. 

 

2.13.3 Ellipsometry  

Ellipsometry is a technique that measures the change in polarization state of a beam of 

light upon reflection from the sample of interest.The nature of this polarization state 

depends on a number of factors like sample thickness and refractive index.  The raw 

experimental data are usually expressed as two parameters Ψ and Δ. The polarization 

state of the light incident upon the sample may be decomposed into an s (out of plane) 

and a p (in plane) component. The intensity of the s and p component, after reflection, 

are denoted by Rs and Rp. The fundamental equation of ellipsometry giving the change 
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in the polarization ellipse upon reflection is fully characterized by the ratio ρ, which is 

expressed as the ellipsometry angles ψ and Δ and is given as: 

 

 ρ=rp/rs=tanψexp(i Δ) (2.8) 

 

We use a rotating compensator ellipsometer with an attenuated total reflection (ATR) 

configuration, in which a sample is placed on the backside of a prism (LaSFN9) with a 

refractive index of 1.845, with the incident beam probing the interface from the prism 

side. The light-source is a He-Ne laser with a wavelength of λ = 633 nm. The technique 

is quite similar to surface-plasmon resonance (SPR), however, we do not need a gold 

layer, thus simplifying the experimental set-up. The temperature of the flow cell is 

controlled by a peltier heating device with a precision of 0.1 oC.  

 

 

 

Figure 2.15 Schematic representation of rotating compensator ellipsometer with an ATR 

configuration.                  
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The thickness of all films was in the optical range, giving rise to sufficient features in the 

recorded spectra to infer the refractive index profile. To analyze the data, model 

refractive index profiles were generated, and the ellipsometric parameters were 

numerically calculated using the matrix optical formulation.[202] The parameters of the 

model were adjusted to minimize the differences between the simulation and 

experimental data. A typical ellipsometry setup is as shown in figure 2.15 

 

2.13.4 UV-Vis Spectroscopy 

Aqueous solutions of Poly(NIPAAm) and poly (NIPAAm) gels  exhibit strong scattering, 

turbidity changes upon heating which can be studied using  UV-Vis spectrophotometry. 

The data can be collected in both as transmittance or absorbance. There would be a 

decrease in transmittance and an increase in absorbance signals when the temperature 

is increased. Both measurements can be determined as a function of temperature or pH. 

 

The UV-Vis spectroscopy was connected to a water bath for temperature in order to 

investigate phase transition behavior of poly(NIPAAm) and peptide conjugated 

poly(NIPAAm) gels. The 0.5 cm long sample cell was completely filled with 

poly(NIPAAm) gels and the sample was equilibrated before taking measurements. All 

polymer gels were heated from 22°C to 45°C.   
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3 CHAPTER 3: DEMIXING BEHAVIOR OF LINEAR AND SURFACE TETHERED 

POLY(NIPAAm) NETWORKS 
3.1 Introduction 

Lower critical solution temperature (LCST) polymers experience a sharp volume-phase 

transition when subjected to small perturbations in external stimuli.[82] For example, it is 

well known that poly(N-isopropylacrylamide) (poly(NIPAAm)) undergoes a 

hydrophilic/hydrophobic transition at roughly 32°C.[33, 36, 37]  This transition has been 

attributed to changes in the hydrogen bonding tendency of water. [35, 203-206] In 

poly(NIPAAm), it is thought that water molecules form ordered structures around both 

the hydrophilic amide moieties and the hydrophobic isopropyl groups to maximize 

favorable hydrogen bonding associations. As temperature is increased, hydrogen 

bonding interactions grow weaker until the LCST is reached, wherein hydrophobic 

attractions between isopropyl groups dominate and collapse the polymer structure.  

 

With respect to the nature of the hydrophilic/hydrophobic transition, aqueous solutions of 

linear poly(NIPAAm) exhibit a concentration dependent demixing temperature. In 

particular, Afroze et al determined that the critical point of poly(NIPAAm) occurs at a 

temperature of 29.5°C and a volume fraction, φ, of 0.43.[207] As the polymer 

concentration is reduced towards zero, the demixing temperature approaches 34°C. To 

explain this phenomenon, the effective Flory interaction parameter χ can be expanded in 

powers of φ with a minimum of three terms, wherein each term is a function of 

temperature.[94, 208, 209] 
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An important question concerns the use of a concentration dependent χ parameter 

derived from solution phase diagrams to describe the behavior of constrained systems, 

including end-tethered or cross-linked polymers. Baulin and co-workers showed that a 

self-consistent field theory formulated in terms of a composition dependent χ parameter 

could lead to vertical phase separation in poly(NIPAam) brushes.[210] An explicit form of 

χ was not considered in the study; however, if χ(T,φ) could be indeed expanded in 

powers of φ up to the third-order term, bilyar type profiles should be seen in 

poly(NIPAAm) brushes. Yim and co-workers showed direct experimental evidence of 

bilayer structures that result from vertical phase separation in poly(NIPAAm) brushes 

with NR.[211] Mendez and coworkers used the explicit concentration and temperature 

dependent χ parameter of Afroze et al. to predict compositional profiles of poly(NIPAAm) 

brushes as a function of temperature.[212] The approach produced results that, at least 

in qualitatively, capture whether or not a brush undergoes a broad or a sharp transition 

as a function of molecular weight and surface coverage. [213-215] 

 

Our results on the swelling behavior of surface-tethered poly(NIPAAm) networks as 

characterized by neutron reflectivity permit a simpler comparison between constrained 

and unconstrained LCST polymers. Harmon and co-workers showed that cross-linked 

poly(NIPAAm) thin films can undergo significant temperature-induced structural changes 

with surface plasmon resonance.[114, 115] Significantly, the transition temperature 

appeared to be lower than the cloud temperature observed in linear poly(NIPAAm) 

solutions.  

 

We prepared surface-tethered networks from photo-cross-linkable poly(NIPAAm) 

copolymers with benzophenone-pendant monomers.[118] Ultraviolet radiation (λ = 350 

nm) triggers the n,π* transition in the benzophenone moieties leading to a biradicaloid 
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triplet state that abstracts a hydrogen from a neighboring aliphatic C-H group, forming a 

stable C-C bond.[216] Neutron reflection reveals that the discontinuity in the volume 

transition of the surface-tethered networks coincides with the miscibility gap of non-

cross-linked linear poly(NIPAAm). This result signifies that the concentration dependent 

χ interaction parameter is unaffected by cross-linking and can be used to model volume 

phase transitions in constrained systems.  

 

3.2 Results and Discussion  

We investigated cross-linked poly(NIPAAm-co-MaBP) coatings on solid quartz 

substrates by neutron reflection. All polymers were spin-cast from cyclohexanone 

followed by heating at 90 oC for 10 minutes to remove any excess solvent that may be 

present. It is of utmost importance to accurately determine the neutron scattering length 

density (SLD) of the spin cast film in order to properly constrain the fits neutron reflection 

data. The SLD depends on  the sum of the bound coherent neutron scattering lengths bi 

of the constituent atoms and the molar volume of the polymer layer, defined as the 

density ρ divided by the molar mass M [198, 199] 

 

 MbS L D
n

i
i∑

=

=
1

ρ                     (3.1) 

 

The density of the layer was determined to be 1.2 g/cm2 as independently measured by 

x-ray reflection. Hence, the neutron SLD of the spin-cast film was estimated to be 0.96 

x10-6 Å-2 
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Figure 3.1 shows the neutron reflection profile from a 320 Å thick film measured under a 

dry environment and D2O vapor at 23 oC.  The Kiessig fringes persisted over 6 orders of 

magnitude loss in the reflectivity in both cases. The reflection profile had a scattering 

length density 0.64 x 10-6 Å-2  fitted in the dry environment. This is 33% lower than the 

expected value of 0.96 x10-6 Å-2. This discrepancy can be accounted for if bound water is 

associated with the poly(NIPAAm) segments. In a two-component system comprising 

species i and j, the measured SLDlayer is related to sample composition via 

 

  jjiila y e r S L DS L DS L D φφ +=                                         (3.2) 

 

Where SLDi,j is the SLD of each species in the unmixed state, respectively and φ i,,j is 

the volume fraction of each species. This relationship assumes that mixing does not 

affect the molar volumes of either species. Assuming an SLD of 0.96 x10-6 Å-2 for dry 

poly(NIPAAm-co-MaBP), the estimated volume fraction of H2O in the spin-cast layer is 

20%.  Exposure of the layer to D2O vapor during the measurement resulted in an 

increase of the scattering length density to 2.4 x 10-6 Å-2, however, the layer thickness 

increased only 6% to 340 Å. In other words, it was seen that D2O replaces H2O, which 

enhances contrast but does not significantly alter the film thickness. The volume fraction 

of D2O in the layer is 25%, close to 20% in the case of H2O. Based alone on the contrast 

variation between H2O and D2O, the scattering length density of dry poly(NIPAAm-co-

MaBP) (without bound water) is estimated to be approximately 0.9 x 10-6 Å-2, which is in 

agreement with the value calculated using the densities obtained from X-ray reflection. 

 

It needs to be noted that rinsing the layer in water for the first time after cross-linking 

generally resulted in a 5-10% reduction in thickness but no apparent change in the 
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scattering length density. Subsequent rinses did produce a further loss in material. We 

were able to reproduce measurements from a single sample over a 2 month period, 

which were both reproducible and consistent from run to run, giving us confidence that 

the films are stable even after repeated solution/dissolution cycles.  

 

After each neutron reflectivity experiment of the polymer against bulk liquid, the dry layer 

was measured and all thicknesses were within 5% of each other. Immediately after a run 

in D2O, the SLD of the polymer layer (measured in air) was between approximately 1.0 

and 1.5 x 10-6 Å-2, reflecting bound D2O remaining in the layer. In subsequent 

measurements, the SLD slowly decayed to 0.6 x 10-6 Å-2 as H2O vapor from the air 

replaced D2O.  
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Figure 3.1 Neutron reflectivity data for surface-tethered poly(NIPAAm-co-MaBP) layer in 

a humidity free “dry” and a D2O vapor environment at 23oC. The solid curve drawn 

through the “dry” data points corresponds to the best fit, which is shown in the inset. The 

data have been offset vertically for clarity. Error bars for the reflectivity data represent 

statistical errors in these measurements. 
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Figure 3.2 Four examples of the neutron reflectivity data for surface-tethered 

poly(NIPAAm-co-MaBP) layer exposed to bulk D2O as a function of temperature. The 

data and fits (solid lines) have been offset vertically for clarity. The curves through the 

data correspond to best fits. Error bars for the reflectivity data represent statistical errors 

in these measurements. The resulting polymer volume fractions, φ, at different 

temperatures are show in Figure. 3.4. 

 

 Figure 3.2 shows the examples of the neutron reflection profiles and the corresponding 

best fits of the poly(NIPAAm-co-MABP) layer exposed to bulk D2O over a temperature 

range of 15-33°C. The data are presented as reflectivity Rqz
4 to compensate for the qz

-4 

decay that results from Fresnel law. The data are shifted on the y axis for clarity. 
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Between a temperature range of 15°C and 29°C, the reflection profile shows a gradual 

broadening of the first Kiesseg fringe, corresponding to a reduction in the overall 

thickness of the layer. At temperatures between 29 and 33°C, the spacing between 

fringes abruptly changes and giving rise to higher order fringes in the reflectivity profile.  

Above 33°C the spacing between fringes remain relatively constant with two to three well 

defined fringes.  

 

The reflectivity profiles at each temperature were initially modeled using a single slab of 

constant SLD, with a smeared interface between the layer and solvent. The best fit 

profiles at low temperatures, however, were inadequate using this model as shown in 

Figure 3.3. A functional form consisting of three slabs, each of constant SLD, with 

smeared interfaces between the slabs by error functions was chosen. Though this 

approach was sufficient to generate reasonable fits at all temperatures (Figure 3.2), 

there are possibilities of better capturing intricate detains in diffuse interfaces using more 

complicated models, providing  better fits.[217, 218] For instance, there is fine-structural 

detail that is not captured completely in the three-slab simulations (such as the 27°C run, 

Figure 3.2). However, our attempts to use more sophisticated models, including cubic 

splines, showed that the fits, while quite sensitive to small changes in interfacial details, 

did not produce statistical differences in the overall thickness.  
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Figure 3.3 Neutron reflectivity data for surface-tethered poly(NIPAAm-co-MaBP) in D2O 

environment at 15oC. The solid line though the data corresponds to the best fit using a 

single slab SLD profile. The inset shows the SLD distribution obtained from the best fit.   

 

The polymer segment profiles that correspond to the best fits in Figure 3.3 are presented 

in Figure 3.4. Each polymer volume fraction profile, φ(z), was estimated from its 

scattering length density profile SLD(z) according to equation 3.2. For every 

temperature, the integral of the volume fraction profile over the extension of the layer 

was within 5-10% of each other. In other words, although the polymer expands and 

contracts, its total mass remains constant. The polymer volume fraction profiles show a 

gradual reduction as temperature is raised from 15 to 29°C. In this temperature regime, 

0.01 0.02 0.03 0.04 0.05 0.06
1E-10

1E-9

1E-8

0 400 800 1200 1600
3

4

5

6

 

 

SL
D 

(Å
-2
) x

 1
06

z (Å)

Quartz Substrate

Rq
Z4  (Å

-4
)

 

 

qz (Å-1)



www.manaraa.com

101 
 

the average thickness decreased from 1100 to 750 Å. The average thickness <z> is 

defined as ( ) ( )∫∫ dzzdzzz φφ2 . Moreover, in every case, a relatively diffuse interface 

was observed at the D2O boundary, which was most likely the result of dangling ends 

that effectively behave as a brush.  Between 29 and 31°C, the average thickness 

abruptly changes from 714 (+/- 35) Å to 339 (+/- 34) Å.  Above 31°C, the layer thickness 

continues to contract, but is only very weakly dependent on temperature. No discernable 

difference in layer thickness was observed between 42°C and 49°C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Volume fractions of the poly(NIPAAm-co-MaBP) in bulk D2O as a function of 

the distance from the substrate and temperature. The data is the outcome of the best fit 

profiles obtained from fitting neutron reflectivities. The examples of such fits are shown 

in Fig. 3.2. 
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In the high temperature regime, the volume fraction profiles are nearly uniform with a 

roughness of approximately 10 Å. Interestingly, there was also a 20-50 Å thick D2O rich 

layer next to the substrate, which could be the result of D2O that cannot escape as the 

layer collapses. While the nature of this trapped D2O was not fully investigated in the 

experiments, repeated temperature cycles showed that the width of the D2O layer was 

not consistent from run to run and may be related to the rate of temperature change. The 

width of the D2O rich layer, however, did not affect the SLD of the collapsed portion of 

the poly(NIPAAm-co-MaBP) network. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Variation of average thickness <z> of the surface-tethered poly(NIPAAm-co-

MaBP) network as a function of temperature.  

 

Figure 3.5 shows the change in the average thickness as a function of temperature. 

Above 15°C, the thickness appears to decrease approximately linearly with temperature. 
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At approximately 30 °C, the layer collapses to nearly its thickness as measured in the 

dry state. It is seen that there is still about 30-35% water, which corresponds to 2-3 D2O 

molecules per polymer segment. It is tempting to explain the nature of the collapse 

based on the experimentally determined phase diagram for linear poly(NIPAAm) 

solutions. As the demixing temperature of linear poly(NIPAAm) is a strong function of 

concentration with almost no effect on molecular weight, it is expected that cross-linking 

will have minimal effect on the phase behavior.[219-221] Afroze and coworkers fit 

experimental phase diagrams of linear poly(NIPAAm) with a quadratic form of a 

compositional dependent χ parameter[207] 

 

   ( ) ( ) ( ) ( ) 2
210, φχφχχφχ TTTTeff ++=        (3.3) 

 

Where the coefficients depend on temperature via  

 

   ( ) TBAT iii +=χ          (3.4) 

 

The Ai and Bi parameters are given in Table 2.1. Using these parameters, the phase 

diagram is drawn in Figure 3.5 showing the binodal boundaries. The binodal curve 

envelopes the two-phase region or the miscibility gap of poly(NIPAAm). Superimposed 

on the binodal are the experimentally determined demixing temperatures for 

poly(NIPAAm-co-MaBP), as determined by turbidity measurements. The degree of 

agreement between the demixing behavior of poly(NIPAAm-co-MaBP) and the data of 

Afroze et al. is not surprising for two reasons: 1. The demixing temperature of 

poly(NIPAAm) has been shown to be relatively independent of molecular weight; and 2. 
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The 3% mole content of MaBP in poly(NIPAAm-co-MABP) is not significant enough to 

perturb phase behavior.  

Table 3.1 Parameters in Equations 3.2 and 3.3 for the χ parameter of linear 

poly(NIPAAm) solutions obtained by Afroze et al.[207] 

 

i Ai Bi (K-1) 

0 

-

12.947 0.04496 

1 17.92 -0.0569 

2 14.814 -0.0514 

 

The extent of dilution in linear polymer systems can be arbitrarily controlled, and 

therefore, any part of the phase diagram can be accessed. Cross-linked systems, on the 

other hand, limit the extent of dilution, and consequently a cross-linked system may or 

may not interfere with the two phase region of the phase diagram depending upon the 

extent of cross-link density. If the cross-link density is sufficiently high, the network is 

prohibited from entering the miscibility gap, and therefore will move from a swollen to a 

less swollen state in a more or less continuous manner. The open circles on the phase 

diagram represent the polymer volume fraction of the surface-tethered poly(NIPAAm-co-

MABP) network as a function of temperature. The polymer volume fractions were 

determined from the flat regions of segmental profiles given in Figure 3.4, where edge 

effects do not play a role. In the temperature regime of 15-29°C, the network lay entirely 

in the single phase region of the phase diagram for linear poly(NIPAAm).  At 

approximately 30°C, the network enters the two-phase region of the phase diagram and 
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jumps to the coexistence point on the polymer-rich binodal. Above 30°C, the network 

follows the coexistence curve of the phase diagram.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Experimental demixing temperature () of uncross-linked poly(NIPAAm-co-

MABP) and experimental swelling curve () of the surface-tethered poly(NIPAAm-co-

MABP) network. Also shown are the predicted binodal for linear poly(NIPAAm) at infinite 

molecular weight and the predicted swelling curve for the surface-tethered network 

derived from Equation 3.7.  

 

Using the χeff parameter from Equations 3.3-3.4, we can attempt to model the equilibrium 

swelling of the network within the Flory-Rehner framework.[116, 117]  The free energy 
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density ΔGnetwork of a perfect phantom network prepared with Neff effective mesh chains 

per unit volume is 

 

( ) ( ) ( ) ( ) ( )[ ]zyxzyxeeff
network T
kT

G
αααααανφχφφφφ ln3

2
1,11ln1 222 +−+++−+−−=

∆

 
(3.5)  

 

k is the Boltzmann constant and αi is the linear deformation of network in the i direction. 

The first two terms account for the mixing of polymer and solvent and the last term 

accounts for elastic deformation of the network. For one-dimensional swelling[118, 222], 

αx =αy =1 and αz=φo/φ which equals the swollen ratio of the network relative to its 

preparation state and φ0 is the polymer volume fraction in the relaxed state at the time of 

cross-linking.   

 

The equilibrium swelling state is found by setting the chemical potential of the solvent µs 

in the network equal to its bulk value (which in a pure solvent is zero):  

 

 

    
( )

( )φ
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∆∂

= networks G
kT
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where Neff is the effective degree of polymerization between cross-links. Neff is the only 

adjustable parameter in the model, which when set to 100, produces good agreement 
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between the model and the experimental data. The model is represented by the dashed 

black line on the phase diagram in Fig. 3.6. While the agreement between model and 

experiment is encouraging, there are still a few caveats. Application of Equations 3.3-3.4 

at temperatures and compositions beyond the range of experimental data used to fit the 

parameters Ai and Bi may not be appropriate. Second, the deformation term in Equation 

3.5 assumes that the network is prepared from equilibrium Gaussian coils, which may 

not be an appropriate assumption in thin, spin-cast films. Finally, the value of Neff is not 

explicitly known, but is a fit parameter. 

 

Nonetheless, despite these shortcomings, the swelling discontinuity in the surface-

attached network coincides with the two-phase region of uncross-linked poly(NIPAAm), 

which suggests that cross-linking does not affect the miscibility gap. Consequently, the 

two-phase region serves as a potential guide for anticipating volume-phase transitions in 

networks. For instance, a lower cross-link density is expected to result a slightly higher 

demixing temperature and larger discontinuity in swelling (on account that the network 

would enter a wider region of the two-phase region). On the other hand, if the network is 

constrained to the region below the critical condition, the network is expected to show a 

smooth volume transition. The next chapter presents data illustrating the adequacy of 

using the χeff parameter in Equations 3.3-3.4 for different states of cross-linking. 

 

3.3 Conclusions  

Surface-tethered poly(NIPAAm-co-MaBP) networks in D2O were characterized with 

neutron reflection and compared to the demixing behavior of linear poly(NIPAAm) in 

solution. The change in thickness of the surface-tethered network as the temperature 

was increased from 15 to 49 °C was considerable, permitting comparison of the network 
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to the phase behavior of uncross-linked poly(NIPAAm). Interestingly, both the swelling of 

the network and the demixing behavior of the linear poly(NIPAAm) could be explained 

with the same concentration-dependent Flory χ parameter. While these experiments do 

not shed light on the molecular interpretation of the composition dependence, they do 

point to the idea that constraints on linear chains do not alter this dependence.  

Consequently, the binodal envelope for two-phase region in solutions of linear 

poly(NIPAAm) serves as a potential guide for understanding volume-phase transitions in 

networks and other confined geometries.  
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4 CHAPTER 4: CONTINUOUS AND DISCONTINUOUS PHASE TRANSITION IN 

SURFACE TETHERED POLY(NIPAAm) NETWORKS 
4.1 Introduction 

Though LCST polymers in confined geometries have found success in technologies that 

benefit from reversible modulation of surface properties, Still, the relationship between 

cloud points of LCST solutions and volume-phase transitions in confined systems remain 

unclear. For instance, if the demixing of a swollen polymer network traverses a cloud 

point, a concentration jump must occur at the temperature of interference. On the other 

hand, if the path of demixing avoids all cloud points, the deswelling will be continuous.[1] 

 

Herein, the swelling of surface-tethered, crosslinked networks of poly(N-

isopropylacrylamide) copolymerized with x mol% of methacroyloxybenzophenone 

(MaBP) (x=1, 3, 5, 10 %) were compared to the miscibility gap of poly(NIPAAm-co-

MaBP) in aqueous solution. Poly(NIPAAm) is a well-studied system that has a two-

phase envelope more or less resembling miscibility square. The lower critical solution 

point lies at approximately 27 oC and a volume concentration of ~0.40, which has been 

reported to be mostly independent of molecular weight.[219-221] In contact with water, 

poly(NIPAAm) swells at temperatures below approximately 27-30°C, the swelling 

determined by a balance between mixing osmotic pressure arising from contacts 

between segments and the entropic of chain stretching. As temperature is increased, 

hydrophobic interactions between isopropyl groups contract the network, expelling water 

in the process. [33-37, 223] 
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The swelling of the cross-linked layers were characterized with both neutron reflectivity 

and ATIR-FTIR. Neutron reflectivity provides an angstrom-scale measure of the average 

water distribution within the network perpendicular to the confining substrate and ATR-

FTIR provides important clues into the chemical interactions of the network. Neutron 

reflectivity data revealed that water is expelled discontinuously at low crosslink densities 

and continuously at high crosslink densities. It is shown that the demarcation between 

the two behaviors occurs roughly at the critical point as measured by cloud point 

experiments.  Interestingly, neutron reflection also revealed the presence of 2-3 water 

molecules per segment that remained after the collapse of the network, independent of 

crosslink density. This finding suggests that water is not completely expunged from the 

network but may remain in confined regions between the amide groups forming perhaps 

water bridges. 

 

Parallel measurements with ATR-FTIR show that the characteristic bands connected to 

the vibrations of the amide II group and the stretching vibrations of the isopropyl aliphatic 

groups correlate approximately to the amount of water in the network.  Peak positions 

were monitored for demixing as induced by either temperature changes or through water 

evaporation at constant temperature.  While the FTIR spectra depend on water content 

in the layer, they do not depend on the method by which water is removed (i.e., either by 

increasing the temperature above the LCST or through evaporation below the LCST). 

This shift in peak positions to lower wavenumbers has been attributed to changes 

between inter and intra-molecular hydrogen bonding [224-226]; however, the data herein 

suggest that the red shift to lower wavenumbers  may be due to weaker hydrogen 

bonding interactions with confined water. Water in these spaces is strongly bound, 

remaining even at temperatures well above demixing. The internal water, however, is 

readily exchanged with deuterium oxide, suggesting heterogeneous domains through 
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which water can diffuse, also emphasizing the absence of a hydrophobic skin layer 

which allows water to diffuse in and out of the collapsed networks. 

 

4.2 Results and Discussion 

Previous results[1] have shown that neutron reflection is well-suited to measure the 

water distribution in thin, swollen films of poly(NIPAAm-co-MaBP) films. In this study, the 

water content of crosslinked poly(NIPAAm-co-MaBP) coatings was monitored both as a 

function of MaBP content (1-10 mole %) and temperature. Figures 4.1 and 4.2 show 

neutron reflection profiles for the two extremes in cross-linking, 1% and the 10%, 

respectively, at 23°C and 33°C in contact with D2O. The dry thickness of each film was 

approximately 300 Å. 

 

The most pronounced differences between the two crosslink densities occur at 23 °C. 

The reflectivity curve associated with the 1% MaBP sample shows only 1 Kiesseg fringe 

with a spacing of Δq = 0.004, corresponding to an overall thickness of roughly 1600 Å.  

In contrast, the 10% MaBP sample has 2 Keissig fringes with a spacing Δq = .02, 

corresponding to a thickness of approximately 350 Å. As the temperature is increased 

above approximately 30°C, the reflectivity curve of the 1% MABP sample undergoes an 

abrupt change, whereas the reflectivity curve of the 10% MaBP sample undergoes only 

a slight change in the shape and intensities of the interference fringes. All reflection 

profiles were fit with a profile consisting of 2-3 SLD slabs, with interfaces between the 

slabs smeared by error functions. At low temperatures, the interface between the coating 

and D2O was difficult to fit, being non-Gaussian in nature.[1] This interface most likely 

arises due to a surface instability akin to a surface Rayleigh wave that results in surface-

confined geometries.[227] The inset in both Figures 4.1 and 4.2 shows the best-fit SLD 

profiles. 
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Figure 4.1 Neutron reflectivity data for surface-tethered poly(NIPAAm-co-MaBP(1%)) in 

a D2O environment at 23°C and 33°C. The solid line though the data corresponds to the 

best fit and the inset shows the SLD distribution obtained from the best fit.   
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Figure 4.2 Neutron reflectivity data for surface-tethered poly(NIPAAm-co-MaBP(10%)) in 

a D2O environment at 23°C and 33°C. The solid line though the data corresponds to the 

best fit and the inset shows the SLD distribution obtained from the best fit.  

 

Neutron reflection experiments were performed for all 4 crosslink densities between 

20°C-40°C. The average thicknesses <z> as a function of temperature are plotted in 

Figure 4.3 where <z> is defined as ( ) ( )∫∫ dzzdzzz φφ2  and φ  is the volume fraction of 

the polymer. All samples show a small dependence on temperature below 28°C, 

expelling water as temperature is increased. At approximately 28°C, the 1% MaBP 

coating collapses from 1200 Å to 400 Å and the 3% MaBP coating collapses from 900 Å 
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to 400 Å. Interestingly, the collapse of the 3% MaBP network appears to be 1-2°C less 

than the 1% MaBP network. In the networks with 5% and 10% MaBP, the change in 

thickness is less pronounced and no abrupt changes in thickness were observed; both 

networks showed a smooth continuous transition from a more swollen to less swollen 

state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Variation of average thickness <z> of the surface-tethered poly(NIPAAm-co-

MaBP) networks as a function of temperature. 
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In figure 4.4, the average volume fraction φ of the poly(NIPAAm-co-MaBP) coatings is 

plotted against temperature for each of the crosslink densities. The experimentally 

determined cloud point curve for poly(NIPAAm-MaBP(3%)) based on turbidity 

measurements is also shown. In the temperature regime below ~27°C, all the coatings 

lay entirely in the single phase region of the phase diagram. At approximately 27°C, the 

swelling of the 1% MaBP coating crosses the cloud point curve and the coating 

experiences a jump in concentration to approximately 65-70 volume % of polymer. The 

3% MaBP coating intersects the cloud point curve at a slightly lower temperature and 

experiences a smaller increase in concentration.  

 

The coatings with both 5% and 10% MaBP remain in the single phase region and thus 

experience no abrupt changes in concentration. All coatings, independent of the 

crosslink density, collapse to approximately the same concentration (~65 %) at 

temperatures above 30°C and follow a similar trajectory with increasing temperature. 

Above 30°C, the networks continue to expel water, but with a very weak dependence on 

temperature. The dashed line suggests the spinodal envelope for the networks, which 

closely follows the cloud point curve.[1, 228]  
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Figure 4.4 Experimental cloud point curve of linear poly(NIPAAm-co-MaBP(3%)) (open 

circles) and experimental swelling curves of surface-tethered poly(NIPAAm-co-

MaBP(x%))  networks. The dotted line is the suggested spinodal for the network, which 

coincides closely with cloud point curve. 

 

The experimental phase diagram raises some interesting questions. From a theoretical 

perspective, the concentration jump observed in the 1% and 3% MaBP samples must 
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techniques, including dielectric relaxation, differential scanning calorimetry and FTIR, 

suggest that hydrogen bonds between amide groups and water molecules are broken in 

the volume-phase transition, generating polymer domains that may form intermolecular 

hydrogen bonds.[79, 80, 104, 230-232] An important question is whether the residual 

water that remains after the volume-phase transition is physically trapped in cavities 

between hydrophobic domains. [233-235] 

 

To gain further insight into the role of water during the collapse of the coatings, the 

coatings were monitored with FTIR in an ATR configuration. In each case, the 

poly(NIPAAm-co-MaBP) coating was much thicker than the penetration depth of the 

evanescent field, thus only the inside of the films were probed. This was done using the 

ATR correction mode using the Nicolet 6700 FTIR software. To remove all residual 

water, the samples were first annealed at 102oC for two hours in a dry, humidity free 

environment. The FTIR spectrum of an annealed sample is shown in Figure 4.5. 

Generally, there are four resolvable bands that are indicative of hydration: The amide I, 

the amide II, and the symmetric and antisymmetric stretches of C-H groups.[35, 102] 

The amide I band consisted of a major peak at 1640 cm-1, the amide II band consisted of 

a major peak at approximately 1516 cm-1, and the antisymmetric C-H stretching band of 

the –C(CH3)2 consisted of a major group at 2971 cm-1.  

 

A prominent band was also found at 3320 cm-1, which corresponds to the N-H stretch of 

the amide group and perhaps water still bound to the network.  After this annealing 

process, contact of the coating with water at 25°C produced 3 general trends in all 

samples. First, the relative spectral intensities of the amide I and amide II bands 

decreased. Second, the appearance of a water band between 3000-3700 cm-1 occurred. 

Finally, the amide II peak and C-H stretching peaks blue-shifted, while the amide I peak 
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red-shifted. All three events are approximately related to the amount of water in the 

networks.   

 

For instance, as distinguished in Figure 4.5, the amide II peak of the 1% MaBP coating 

blue-shifted by 42 cm-1 and the antisymmetric C-H peak by 15 cm-1 upon adding water at 

25°C. The amide II peak of the 10% MaBP coating (not shown), on the other hand, blue-

shifted by only 37 cm-1 and the C-H peak by 12 cm-1 as a consequence of a lower 

degree of swelling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 ATR-FTIR spectra of poly(NIPAAm-co-MaBP (1%)) solvated in water at 25°C 

and annealed to the ZnSe crystal at 102°C indicating peak positions in the isopropyl and 

amide II groups. 
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Following addition of water at 25°C, the temperature was increased. Figure 4.6 shows 

the resultant red-shifts in the amide II group and the antisymmetric C-H stretching of the 

–C(CH3)2 group as temperature is increased for the first 10 °C between 25°C and 35°C. 

Analogous to the neutron reflection results, a sharp change is seen starting at 28°C for 

both the 1% and 3% MaBP samples, whereas the change is much subtler for the 5% 

and 10% MaBP samples. 

 

At 35°C, all the major peaks collapse to approximately the same values independent of 

crosslink density. At this temperature, however, the peak positions do not return to their 

annealed values, indicating that demixing does not completely expel water, which again 

is consistent with the neutron reflection results. 

 

 

 

 

 

 

 

 

 

Figure 4.6 Change in the amide II and in the antisymmetric(AS) C-H stretching of -

C(CH3)2 for poly(NIPAAm-MaBP)  with MaBP 1-10% over a temperature range of 25°C -

35°C. 
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If water is not added directly to the coatings after annealing, but rather the coatings are 

allowed to remain under ambient conditions, the amide II band slowly blue-shifted from 

its annealed value of 1516 cm-1 to 1528 cm-1, independent of crosslink density. On the 

other hand, the bands associated with the aliphatic stretching peaks did not change. 

This suggests that the natural humidity in the air is sufficient to hydrate the amide 

groups, but that the aliphatic groups remain in a hydrophobic environment.   

 

Exposure of the sample to saturated water vapor at 25°C continued to shift the amide II 

peak to 1545 cm-1 indicative of further hydration; however, 100 % humidity was still not 

sufficient to affect the stretching band of the aliphatic groups. If the temperature is 

increased to 102 °C under 100 % humidity, the amide II peak red-shifted to 1530 cm-1 as 

shown in Figure 4.7, indicative of demixing, yet the amide II peak still did not completely 

return to its annealed value of 1516 cm-1. Also in this case, there is still the presence of a 

sizable water band near 3500 cm-1, which explains why perhaps the amide II does not 

return to its annealed value. Only if the heating chamber is evacuated of humidity does 

the amide II peak slowly shift back to 1516 cm-1 and the water band disappears. 
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Figure 4.7 ATR-FTIR spectra of poly(NIPAAm-MaBP (1%)) exposed to  water vapor at 

25 °C and to water vapor at 102 °C  indicating peak positions in the isopropyl and amide 

II groups.  

 

Previously, it has been reported that the red-shift of the amide II region during the phase 

transition is due to the breakage of polymer-water N-H…O-H2 hydrogen bonds in favor of 

polymer-polymer N-H…O=C hydrogen bonds or non-hydrogen bonded N-H groups.[236] 

The FTIR results herein coupled to the neutron reflection results suggest a more 

complicated scenario. To summarize, the experimental FTIR data show a substantial 

shift in the amide II band between an annealed and vapor-contacted coating (1516–1545 

cm-1), whereas the bands associated with the aliphatic stretching groups are largely 
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unaffected by water vapor. Fully exposing the coating to liquid water further shifts the 

amide II band (depending on crosslink density) as the layer swells, but this change is 

small (up to 10 cm-1) compared to the first hydration step. Swelling in water also blue-

shifts the position of the stretching bands associated with the aliphatic groups. Finally, as 

the temperature is increased above the cloud point in water, the stretching bands 

associated with the aliphatic peaks return to their position in the annealed state, but the 

amide II returns to its hydrated value in the weakly swollen state. Such findings suggest 

that during the polymer collapse, the isopropyl groups completely dehydrate but that the 

amide groups remain hydrated. This finding is consistent with recent dielectric relaxation 

experiments that show that the number of water molecules surrounding the amide 

groups of NIPAAm monomer did not change during the phase transition.[103]  

  

Taken together, these experiments imply that the network is collapsed as driven by 

hydrophobic interactions and that water is destabilized around the amide groups as the 

structure collapses, but does not break free of the structure, perhaps leading to a 

heterogeneous structure with amide-rich hydrophilic domains and hydrophobic domains. 

Water is still free to diffuse through the layer, as evidenced by the fact that D2O can be 

readily exchanged for H2O in the collapsed poly(NIPAAm-co-MaBP) layer at both 50°C 

and at 102°C under a saturated vapor environment. Exposing the poly(NIPAAm-co-

MaBP) coating to liquid D2O at 25°C results in the amide II peak position near 1467 cm-1 

as a result of isotopic substitution of deuterium for hydrogen in the N-H group. Figure 4.8 

shows the collapsed layer in pure H2O exposed to an equimolar H2O/D2O mixture at 

50°C and 102°C. The layers were allowed to equilibrate for 25 minutes, after which time 

the presence of OH and OD stretching bands of nearly equal intensity appeared.  

Moreover, the amide II bands associated with both N-H group and N-D groups appear in 
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the spectrum, further suggestive of isotopic substitution of the amide groups with 

deuterium and access of D2O to the amide groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 ATR-FTIR spectra of poly(NIPAAm-MaBP (1%)) upon equimolar water –

deuterium substitution (1:1) at 50°C and at 102°C in the liquid and saturated vapor 

states, respectively. 
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4.2.1 Demixing Behavior of Poly(diethylacrylamide-co-MaBP(3%)) (Poly(DEA-co-

MaBP)) 

The presence of confined water even in the collapsed state of poly(NIPAAm-MaBP) 

coatings have been reported.[1] Neutron reflection and FT-IR are excellent tools to 

investigate phase transition and the presence of confined water. In this study, we 

investigated the presence of water trapped in poly(DEA-MaBP) coatings and 

characterized their phase transition. We have also tried to draw comparisons between 

poly(DEA-MaBP) coatings with Poly(NIPAAm-MaBP) coatings with respect to their 

phase change and the presence of water.  Figure 4.9 shows the neutron reflectivity 

profiles for poly(DEA-MaBP(3%)) coatings at temperature 8 oC through  43oC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9 Neutron reflectivity data for surface-tethered poly(NIPAAm-co-MaBP(1%)) in 

D2O environment at 23°C, 350C and 45°C. The solid line though the data corresponds to 

the best fit for the profiles. 
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The reflectivity profiles as shown in figure 4.9 for poly(DEA-MaBP(3%)) indicate a 

gradual continuous transition from 8oC to 43oC contrary poly(NIPAAm-MaBP(3%)) which 

shows a more discontinuous phase change.[1] We see the formation of the first kiesseg 

fringe at 8 oC with Δq=0.01 corresponding approximately to a thickness of 628 Å 

gradually broadening to more well defined fringe pattern at 42oC with Δq=0.03 

corresponding approximately to a thickness of 209 Å.  

 

The change in fringe pattern directly corresponding to change film thickness is gradual 

with the transition clearly evident from 26oC onwards. Figure 4.10 shows the volume 

fraction profiles for best fits reflection profiles shown in figure 4.9. For every temperature, 

the integral of the volume fraction profile over the extension of the layer was within 10-

15% of each other thus ensuring that the total polymer mass remains relatively constant. 

SLD profiles for poly(DEA-MaBP(3%)) coatings consisting of 1-3 SLD slabs with 

interfaces between the slabs smeared by error functions.  

 

 

 

 

 

 



www.manaraa.com

126 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Volume fraction profiles for poly(DEA-MaBP(3%) coatings for temperatures 

250C, 350C and 420C 
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tends to hydrogen bond with C=O and N-H moieties of the amide I and amide II peaks 

forming water bridges. In addition, the side chains of poly(DEA-MaBP) coatings contain 

an additional carbon in its side chains than poly(NIPAAm-MaBP) coatings thus 

increasing its hydrophobic surface area. This can reduce the amount of water uptake by 

poly(DEA-MaBP) coatings making these coatings swell to a lower degree compared to 

poly(NIPAAm-MaBP) coatings. Also, the presence of the donor hydrogen in the amide 

groups might be responsible for the sharp transition seen in poly(NIPAAm-MaBP(3%)) 

coatings. The absence of amide proton in poly(DEA-MaBP(3%)) coatings might hinder in 

forming less compact polymer segments at higher temperatures resulting in a smooth 

and more continuous transition. Recent reports have shown that greater compactness in 

poly(NIPAAm)  structures in the collapsed phase compared to poly(DEA) due to 

intramolecular hydrogen bonding might lead to greater discontinuity in phase 

transition.[237] 

 

The average thickness <z> for all measurements, defined as ( ) ( )∫∫ dzzdzzz φφ2 , where 

φ(z) is the segment density profile, is shown for in figure 4.11. The average thickness of 

poly(DEA-MaBP(3%)) falls from 426 Å at 8°C to 217Å at 43°C Though similar to 

poly(NIPAAm-MaBP) structurally, poly(DEA-MaBP(3%)) exhibits a very continuous 

volume phase change compared to  poly(NIPAAm-MaBP(3%)) where the average 

thickness changes from 1024 Å at 23°C to 313 Å at 33°C exhibiting  a volume change 

very discontinuous in nature. 
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Figure 4.11 Variation of average thickness <z> as a function of temperature for surface-

tethered poly(DEA-MaBP) AND poly(NIPAAm-co-MaBP) networks. 
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Figure 4.12 shows the change peak positions in the ethyl groups in the annealed and 

solvated states. The annealed poly(DEA-MaBP) coatings show no change in any of the 

ethyl groups from 25°C TO 102°C. Solvating the polymer coating with water brings about 

a small red shift of  around 10 cm-1 increase in (AS) C-H stretch of –C(CH3)2, 5cm-1 

increase in both (S) C-H stretch of –C(CH3)2 and (AS) C-H stretch of –C(CH2) groups. All 

the aliphatic groups exhibit a red shift as the polymer coatings go through their phase 

transition. All the ethyl groups return to the peak positions in the annealed state as the 

water evaporates and anyways do not deviate much from their annealed state. This 

suggests that the ethyl groups remain dehydrated as the polymer goes through its 

transition and hence do not play a major role in promoting phase transition.  The amide II 

peaks are more sensitive to solvent changes and in the case of poly(NIPAAm-MaBP), 

the peak positions of the amide II  groups do not completely return to their annealed 

state. There still seems to be sufficient hydrogen bonding between water molecules and 

N-H and C=O trapping water even after the collapse of the polymer coatings. As a result, 

a large portion of water is still retained in the coatings. However, poly(DEA-MaBP) does 

not have a dissociable proton in the amide groups. As a result, the N-H bands in the 

amide II region and around the O-H stretch region are absent in these coatings. This 

implies that water does not form bonds in the amide II region as well as with water 

around the N-H stretch and 0-H stretch region. This could explain why there is relatively 

less water in poly(DEA-MaBP) coatings compared to poly(NIPAAm-MaBP) coatings.  
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Figure 4.12 Change in the antisymmetric (AS) C-H stretching of -C(CH3)2 , (AS) C-H 

stretch of –C(CH2) and symmetric C-H stretch of -C(CH3)2 for poly(DEA-MaBP(3%))  
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bonds. Neat poly(DEA-MaBP) coatings hardly show any presence of O-H peaks due to 

water.  
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Figure 4.13 FT-IR spectrums of neat poly(DEA-MaBP (3%)) at 25oC, 50oC and annealed 

to the ZnSe crystal at 102oC 
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Figure 4.14 FT-IR spectrums of poly(DEA-MaBP (3%)) at solvated 25oC and 50oC and 

annealed to the ZnSe crystal at 102oC 
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heterogeneous domains that may be present within polymer coatings even in the 

collapsed state. It is only at temperatures as high as 102°C, all residual water is 

expunged from the polymer coatings. These results are analogous to our previous 

neutron reflection results where we show that confined water is present in poly(NIPAAm-

MaBP) even in the collapsed state.[1]  

 

However, the presence of the dissociable proton in the amide II peaks and the presence 

of the N-H stretch region tend to significantly hold more water (30%-35%) by hydrogen 

bonding with the water molecules. The change in peak positions does not seem to 

depend on temperature per say, but more on the amount of water that’s confined inside 

the networks. This finding is consistent with recent dielectric relaxation experiments that 

show that the number of water molecules surrounding the amide groups of NIPAAm 

monomer did not change during the phase transition.[103, 230]  

 

Figure 4.15 shows the second derivative of poly(DEA-MaBP) in solvated in water. The 

regions around 1595(+/-5) cm-1, peak positions around 1619(+/-5) cm-1 represent and 

peak positions around 1638(+/-8) cm-1.[238] As poly(DEA-MaBP) coatings are devoid of 

the amide II proton which acts as a hydrogen donor, there is no C=O…H-N bond and 

also no N-H…0-H bonds at the N-H and O-H stretch region at around 3200 cm-1. 
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Figure 4.15 Second derivative of solvated poly(DEA-MaBP(3%)) coatings at temperature 

25°C and 102oC. 
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C=O groups.  
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All these results together suggest that the poly(DEA-MaBP(3%)) coatings like 

poly(NIPAAm-MaBP(3%)) coatings retain water even in the collapsed state. There 

seems to be heterogeneous domains inside the collapsed polymer coatings which still 

hold considerable amounts of water molecules. This water is tenaciously held inside 

hydrophilic and hydrophobic domains. The absence of a dissociable proton in poly(DEA-

MaBP) coatings may play a role in why there is significantly less water (10%-15%) 

compared to poly(NIPAAm-MaBP) coatings which hold as much as 30%-35% water 

molecules as confirmed by our neutron reflection experiments. The aliphatic groups 

generally remain dehydrated even when the polymer coatings are completely saturated 

and do not play a major role in the collapse of the networks. The amide 1 and mainly 

amide II peaks are responsible in confining water molecules and are responsible in 

determining the nature of the transition by their interaction with water trapped inside 

them. There also seems to be pockets of water inside the collapsed poly(DEA-MaBP) 

coatings which are removed only at temperatures as high as 102oC. 

 

4.3 Conclusions 

Surface-tethered poly(NIPAAm-co-MaBP) networks with varying crosslink density were 

characterized with both neutron reflection and ATR-FTIR and compared to the demixing 

behavior of linear poly(NIPAAm-co-MaBP) in solution. Neutron reflection revealed that 

the discontinuity in the volume transition of the surface-tethered networks coincided with 

the miscibility gap of non-cross-linked linear poly(NIPAAm-co-MaBP). This finding 

signifies that confinement does not alter the interactions that govern the coil-globule 

transition in single poly(NIPAAm) chains. Both neutron reflection and FTIR results 

showed that a discontinuous transition takes place only when the surface-tethered 

network is prepared in a state that is able to traverse the cloud point curve upon 

demixing. If, on the other hand, the network is prepared in a state that does not traverse 
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the cloud point curve, the network follows a continuous decrease in swelling upon 

demixing. FTIR results seem to indicate water molecules trapped between amide groups 

through hydrogen bonding can undergo substitution with D2O even in the collapsed 

state. Comparative studies with poly(DEA-co-MaBP(3%)) show that the dissociable 

proton to be important in retaining more water in poly(NIPAAm) coatings than in 

poly(DEA-co-MaBP) coatings. 
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5 CHAPTER 5: ROLE OF HOFMEISTER SERIES OF SALTS ON THE DEMIXING 

BEHAVIOR OF POLY(NIPAAm) NETWORKS 
5.1 Introduction 

Poly(N-isopropylacrylamide) (poly(NIPAAm), is a well studied thermoresponsive polymer 

undergoes roughly a hydrophilic-hydrophobic transition at its demixing temperature 

finding  applications in drug delivery,[239, 240] separations,[239, 240] tissue 

cultures,[241, 242] and chromatography.[243, 244]. The exact mechanism of the 

demixing behavior in poly(NIPAAm) remains debatable. The swelling below the demixing 

temperature is determined by a balance between mixing osmotic pressure arising from 

contacts between segments giving rise to greater intramolecular interaction between 

polymer segments and the entropic of chain stretching. As temperature approaches the 

critical value, hydrophobic interactions between isopropyl groups contract the network, 

expelling water in the process. [33-37, 223]  

 

The demixing behavior of Poly(NIPAAm) is known to perturbed by the addition of 

cosolutes like salt.[3] The change in demixing temperature due to the salts is not purely 

concentration dependent. The change in magnitude of the demixing temperature is 

greatly affected by the nature of cosolute added and usually follows the Hofmeister 

series of salts.[3-5] ATR-FTIR, neutron reflection and ellipsometry was used to 

characterize the surface tethered poly(N-isopropylacrylamide) copolymerized with x mol 

% methacroyloxybenzophenone (MaBP) (where x= 3% and 5%) acting as the cross-

linker. Neutron reflection and ellipsometry was used to derive average water distribution 
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and swelling characteristics of the surface confined polymer coating. ATR-FTIR was 

used to study the intermolecular and intramolecular interaction between the polymer 

coating, salts and water molecules. 

 

Neutron reflection data suggests the presence of 2-3 water molecules per polymer 

segment corresponding to 30-35% of water that seems to be trapped even in the 

collapsed state.[1] We have investigated the role of Hofmeister salts on the demixing 

behavior of poly(NIPAAm-co-MaBP(3%)) coatings. The addition of salts seem to interact 

mainly with the amide groups suppressing the amide II group in the order SO4
-2>Cl->Br-

>I-. In addition, the presence of strong salting out Na2SO4 seems to help in driving out 

most of the water. However, water that is bound strongly to amide moieties of the 

polymer is not completely expelled even in the presence of high Na2SO4 concentration 

(1M). FTIR experiments have shown the presence of 2 distinct populations of water 

present around 3400cm-1and 3280cm-1 wavenumbers.[245] While the addition of Na2SO4 

brings about a shift in the peak position of the band at 3400cm-1 representing of water 

bound to each other significantly, there is little change in the peak position of the band at 

3280cm-1 representing water bound to the amide groups of the polymer coating perhaps 

forming water bridges and also seem to be independent of cross-link density. 

 

FTIR experiments on poly(NIPAAm) coatings have shown that the peak positions of the 

isopropyl and amide groups shift due to changes in the intermolecular and 

intramolecular hydrogen bonding between the polymer and water molecules with water 

bound to amide groups even at temperatures well above the demixing temperature.[79, 

80, 104] We present FTIR 2nd derivative spectra of poly(NIPAAm-MaBP) coatings 

solvated Na2SO4, NaCl, NaBr and NaI in order to better understand the finer nuances in 

the molecular interactions between salt and polymer groups below and above the 
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demixing temperature. We have for the first time shown the molecular interactions of the 

amide groups of surface-tethered photo-cross-linked poly(NIPAAm-MaBP(3%) coatings 

with the Hofmeister series of salts (SO4
-2> Cl-> Br-> I-) using ATR-FTIR.  

 

5.2 Results and Discussion 

We investigated the demixing behavior of photo cross-linked poly(NIPAAm-MaBP(3%)) 

coatings solvated in 0.1-1.0M Na2SO4 with neutron reflection. Neutron reflection profiles 

and their corresponding volume fraction profiles from figure 5.1 and 5.2 follow the 

conformational change in the polymer coatings across the demixing temperature. The 

NR profiles indicate a discontinuous phase transition in poly(NIPAAm-MaBP).There 

seems to be large dependence on Na2SO4 concentration between 0.1-0.3M where the 

coatings are swollen. The coatings collapse almost to their dry thickness (200 Å) at 1.0M 

Na2SO4, with change in thickness from 0.3-1.0M Na2SO4 being very minimal. The 

neutron profiles show 1 well defined kiesseg fringe at a concentration of 0.125M Na2SO4 

with Δq = .008 which corresponds to an overall thickness of 785 Ǻ. As the concentration 

of Na2SO4 increases to 1.0M, 2 well defined kiesseg fringes are formed with Δq = .03 

corresponding to a thickness of 209 Ǻ. All reflection profiles were fit with a profile 

consisting of 2-3 SLD slabs, with interfaces between the slabs smeared by error 

functions. At low temperatures, the interface between the coating and D2O was difficult 

to fit, being non-Gaussian in nature.[1] 

 

.  
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Figure 5.1 Reflectivity profiles for poly(NIPAAm-MaBP) from 0.1M -1.0M Na2SO4 

 

The volume fraction profiles in figure 5.2 show that the coating collapse from an 

extended conformation at 0.1M NA2SO4 to a collapsed state at 1.0M NA2SO4. However, 

the polymer coatings swell to a lesser extent compared to coatings that have been 

solvated in water.[1] The change in volume phase transition seems to be continuous due 

to the water-salt interaction caused by the salting out effect of NA2SO4.  

 

0.00 0.02 0.04 0.06 0.08 0.10

(R
q z4 (Å

-4
))

 

1.0M Na2SO4

0.8M Na2SO4

0.6M Na2SO4

0.5M Na2SO4

0.4M Na2SO4

0.2M Na2SO4

0.1M Na2SO4

 

 

qz (Å
-1)



www.manaraa.com

141 
 

It is also evident from the volume fraction profiles that the amount of water confined in 

poly(NIPAAm) coatings solvated in Na2SO4 retain considerably less water (18-20%) 

compared to poly(NIPAAm) coatings solvated in D2O (30-35%) in the collapsed state.[1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Volume fraction profiles for poly(NIPAAm-MaBP) from 0.1M-1.0M Na2SO4. 
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Figure 5.3 Variation of average thickness <z> of the surface-tethered poly(NIPAAm-co-

MaBP) networks as a function of concentration. 

 

The average thicknesses <z> as a function of temperature are plotted in Figure 5.3 

where <z> is defined as ( ) ( )∫∫ dzzdzzz φφ2  and φ  is the volume fraction of the 

polymer. The networks are swollen to a average thickness of 496 Å at 0.1 M Na2SO4 

collapse to 236 Å at 0.4M Na2SO4.There is a weak dependence for film thickness with 

concentration above 0.4M and the coatings collapse to a average thickness of 226Å at 

1.0M Na2SO4. 
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Figure 5.4 The ellipsometry Δ and ψ values and the simulated fits as a function of the 

angle of incidence for poly(NIPAAm-MaBP) coatings solvated in 0.1-1.0M Na2SO4. The 

data and the simulated fits have been shifted for clarity. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 Thickness versus concentration and refractive index versus concentration for 

poly(NIPAAm-MaBP) solvated in 0.1-1.0M Na2SO4. 
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Ellipsometry data also shows a discontinuous trend in the collapse of the coatings 

solvated in Na2SO4. The best fit single box profiles for Δ and ψ values are as shown in 

figure 5.4. It can be seen that the Δ and ψ values change between 0.1-0.2M Na2SO4, 

with no significant changes for concentrations from 0.2-1.0M Na2SO4. The thickness and 

the corresponding refractive index determined using Δ and ψ values as a function of 

Na2SO4 concentration is shown in figure 5.5. There is a steep decrease in thickness of 

the polymer coating between 0.1-0.3M Na2SO4 followed by no significant change in 

thickness from 0.3-1.0M Na2SO4. The dry polymer coating has a refractive index of 

1.445 falling to 1.396 when solvated in water. It can be seen that with the addition of 

0.1M Na2SO4, the refractive index goes up to 1.404 indicating that some amount of 

water is expelled out of the polymer coating due to the salting out effect of Na2SO4. The 

thickness of the polymer coating swells up to 238 nm in water from a dry thickness of 

78.7 nm corresponding to a swell ratio of 3.01. The thickness of the polymer coating 

goes down to 210.7 nm when solvated in 0.1M Na2SO4 corresponding to a swell ratio of 

2.67 due to expulsion of water molecules from the polymer coating. The polymer coating 

collapses to a thickness of 94.2 nm at 1.0M Na2SO4 suggesting that water is still trapped 

in the collapsed polymer coating corresponding well with neutron reflection data in the 

same concentration regime.  

 

We then extended our study to investigate the interaction of Hofmeister series of salts 

(S04
->Cl->Br->I-) on the hydrophilic amide moieties and hydrophobic isopropyl moieties of 

poly(NIPAAm-co-MaBP(3%)). 
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Figure 5.6 2nd derivative FTIR spectra of poly(NIPAAm-MaBP(3%)) solvated in water at 

25°C and 50°C. 

 

Figure 5.6 shows 2nd derivative FITR spectra OF poly(NIPAAm-MaBP(3%)) coating at 

25°C where it is completely solvated in water and at 35°C,wherein most of the  water is 

expelled from the collapsed coating. The 2nd derivative FTIR spectra show the presence 

of 2 subbands at 1625 cm-1 and a shoulder at 1649cm-1 in the amide I region and 1 

subband at 1550 cm-1 in the amide II region at 25°C. The shoulder at 1649cm-1 at 25°C 

increases in intensity and is blue-shifted by 2cm-1 at 35°C. The subband at 1558cm-1 is 

red-shifted by 8cm-1 as the temperature increases from 25°C-50°C. This change is also 

accompanied by a drastic change in the peak intensity of the amide II moiety as the 

polymer coating collapses above its demixing temperature.  

 

The addition of salts brings about a drastic change in the demixing behavior of 

poly(NIPAAm-MaBP(3%)). The salts tend to reorient water molecules and seem to 

enhance greater polymer-polymer interaction. The Hofmeister series lists salts on their 
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increasing ability to ‘salt out’ from solution (SO4
-> Cl-> Br-> I-) with the sulphate ion being 

a strong salting out agent  and the iodide ion being a weak salting out or rather a strong 

‘salting in’ agent.[4, 5]  

 

We solvated poly(NIPAAm-MaBP) coatings in Na2SO4, NaCl, NaBr and NaI solutions 

with concentrations ranging from 0.125M-2.0M  and the FITR 2nd derivative spectrum for 

various salts is shown in figure 5.7. The 2nd derivative FTIR spectra of poly(NIPAAm-

MaBP(3%)) coatings solvated in Na2SO4 show the presence of 2 distinct subbands at 

1620cm-1 and 1647cm-1 in the amide I region and prominent subband at 1548cm-1 in the 

amide II region at 0.125M. The subbands of poly(NIPAAm-MaBP(3%)) coating solvated 

in Na2SO4 appear similar to the coating solvated in water. However, due to the salting 

out nature of Na2SO4, the subband at 1647cm-1 in the amide I region is red shifted by 

2cm-1 compared to the coating solvated in water and also increases in intensity. The 

amide II subbands seem to remain identical for poly(NIPAAm-MaBP(3%)) solvated in 

water and Na2SO4. Also noticeable is that the amide II region does not change a lot in 

peak intensity even as the concentration increases from 0.125-2.0M for Na2SO4.  
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Figure 5.7 2nd derivative FTIR spectra of poly(NIPAAm-MaBP(3%)) coatings solvated in 

0.125-2.0M Na2SO4, NaCl, NaBr and NaI. 
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Poly(NIPAAm-MaBP(3%)) coatings solvated in NaCl and NaBr also exhibit 2 sub bands 

in the amide I region  similar to Na2SO4 and water. However, we see the emergence of a 

secondary sub band (1564cm-1) in addition to a very prominent subband around 

1550cm-1 in the amide II region at 0.125M. The subband decreases in intensity as the 

concentration increases to 2.0M in cases. The emergence of a secondary subband 

seems to suppress the amide II moiety as seen at lower concentrations (0.125M). At 

higher concentrations (2.0M), we see that the amide II region begins to increase in 

intensity corresponding to a simultaneous decrease in the intensity of the secondary 

subband in the amide II region.  

 

Poly(NIPAAm-MaBP(3%)) coatings solvated in NaI also show 2 secondary subbands in 

the amide I region where in the subband at 1643cm-1 increases in intensity as the 

concentration changes from 0.125-2.0M. The addition of NaI seems to suppress the 

amide II moiety from increasing in intensity even as the concentration changes from 

0.125-2.0M. The presence of a secondary peak in the amide II region at around 1564cm-

1 might be responsible in suppressing the amide II moiety. The addition of even very low 

concentration (<0.05M) of NaI is enough to bring about the suppression of the amide II 

moiety (data not shown). These results clearly indicate the role of salting out and salting 

in salts on the demixing behavior of poly(NIPAAm-MaBP(3%)) coatings changes as in 

the order ( SO4
-> Cl-> Br-> I-). 
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Figure 5.8 Change in the area of amide I/amide II of poly(NIPAAm-co-MaBP(3%)) 

solvated in water, Na2SO4, NaCl, NaBr and NaI as a function of swelling ratio. 
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Figure 5.9 Change in amide II and CH3(as) groups of poly(NIPAAm-co-MaBP(3%)) 

solvated in water, Na2SO4, NaCl, NaBr and NaI as a function of swelling ratio. 

 

It has been suggested that that salt, poly(NIPAAm) and the first hydration layer interact 

in 3 different mechanisms.[4-6] Firstly, the anions can polarize the water molecules that 

are hydrogen bonded to poly(NIPAAm). Secondly, the anions can interact with the 

hydrophobic hydration increasing the surface tension at the polymer/aqueous interface. 

Thirdly, the anions can directly bind with the amide groups of poly(NIPAAm).[4-6]  
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correlation on the change in the area of the amide moieties with the introduction of 

Hofmeister salts. The swelling ratio of 3.0 seen in polymer coatings solvated in water 

and in the case of NaI, a strong salting in agent. We see a slight drop polymer swelling 
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ratio of approximately 2.67, 2.7, and 2.76 for Na2SO4, NaCl and NaBr respectively with a 

corresponding decrease in the area of amide I/amide II indicating a strong interaction 

between the polymer amide groups and salts. Figure 5.9 shows the change in wave 

number of the hydrophilic amide II (N-H) moiety and the hydrophobic CH3(as) moiety of 

poly(NIPAAm-co-MaBP(3%)) coatings as a function of swelling for a concentration range 

of 0.125M-1.0M for Na2SO4, NaCl, NaBr and NaI. It can be seen that the change in 

wavenumbers amide II when the polymer coatings were solvated in water is 13cm-1 for a 

temperature range of 25°C-35°C. The addition of salts drastically brings down the 

change in the wavenumbers for all salt types for a concentration range of 0.125M-1.0M 

at 25°C. However, the change in the wavenumbers for the isopropyl groups (CH3(as)) is 

only 3cm-1 even when solvated in water alone providing further evidence which support a 

strong polymer-salt interaction responsible for the demixing behavior  

 

The addition of salts does not induce any significant changes in the wavenumbers of the 

CH3(as) group for all salt types. This suggests that the interaction of Hofmeister salts on 

poly(NIPAAm) is through a direct binding effect of the salts with the amide groups 

displacing water molecules around the immediate vicinity of the amide moieties. Above 

the demixing temperature, the amide-salt interaction is weakened. This leads to a 

secondary driving force which contributes in the expulsion of water from the collapsed 

polymer coatings. This offers a plausible explanation for the presence of relatively lower 

amount of water present (15-20%) in the collapsed polymer coatings compared to 

polymer coatings solvated in water alone. It is noted that NaI exhibits slightly different 

behavior compared to other Hofmeister salts. This might be due to the fact that the 

highly salting in nature of NaI prevents the polymer coatings to undergo demixing 

completely.  
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Figure 5.10 Surface tension calculated from surface tension increments as a function of 

demixing concentration for Na2SO4, NaCl and NaBr at 25°C.[246] 
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5.10.[246] We see that the demixing salt concentration follows the Hofmeister series with 

a corresponding increase in surface tension. This suggests that there is no correlation 

with salts affecting the hydrophobic hydration around the isopropyl groups as any 

interaction with the hydrophobic groups, the surface tension change for Na2SO4, NaCl 

and NaBr will be constant. This suggests that the hydrophobic groups remain more or 

less dehydrated with or without the addition of salts and the change in the surface 

tension needed to bring about dehydration is as a result of a direct interaction of the 

Hofmeister anions with the amide II moiety. 

 

All these results together suggest that the amount of water in the polymer is strongly 

dependent on the concentration of the salt solution. Na2SO4 brings about a reduction in 

the amount of water bound to the polymer coatings in the collapsed state. The water that 

is driven out seems loosely hydrogen bound to other water molecules which readily 

come out on addition of Na2SO4. However there is still about 15% of water that is 

trapped inside the polymer coatings in the collapsed state which is much lower than 

when solvated in water.[1] This may be water that is strongly hydrogen bound to the 

amide groups of the polymer. 
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6 CHAPTER 6: PEPTIDE EMBEDDED SMART 

POLY(N-ISOPROPYLACRYLAMIDE) HYDROGELS 
6.1 Introduction 

The hydrophilic to hydrophobic phase transition of poly(N-isopropylacrylamide) or 

poly(NIPAAm) based polymers have been of considerable interest. These polymers are 

termed smart, which arises due to an entropic gain as water molecules surrounding 

hydrophobic isopropyl groups are expelled into the bulk as the temperature is increased 

beyond a certain critical value called the lower critical solution temperature (LCST)The 

responsive nature of poly(NIPAAm) based polymers have found applications in drug 

delivery,[239, 240] separations,[239, 240] tissue cultures,[241, 242] and 

chromatography.[243, 244] 

 

To this effect, we have synthesized poly(NIPAAm) based hydrogels copolymerized with 

3-aminopropylmehtaacrylamide which provides a free amine functional group. This 

provides us a starting point to couple bio-polymers like peptides to create peptide-based 

hybrid polymers with both thermo and pH responsiveness. Using a modified Merrifield 

solid phase peptide synthesis technique,[194, 195] the elastin family of pentapeptide, 

Gly- Glu- Gly-Val-Pro (GEGVP) with Glu being the guest residue was incorporated to 

provide pH responsiveness to the hydrogels.  

 

Our results show that poly(NIPAAm) hydrogels can be made to go through their 

transition in a narrow pH  range by only changing the peptide sequence to alter their 

isoelectric point. Hybrid polymers composed of synthetic polymer and protein-folding 
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motifs have been reported that collaspse at 40°C where the peptides was tagged using 

nickel and histidine to hydroxypropylmethaacrylamide (HEMA) copolymers.[9] It has 

been reported that Gly(G) and His (H) residues form complexes with heavy metal such 

as copper, nickel and zinc.[247, 248]  

 

We have shown that poly(NIPAAm)-GGH constructs can be similarly fabricated  which 

aggregate on chelating to heavy metal ions like Cu(II), Ni(II) and Zn(II), but do not 

aggregate in water. We have hence demonstrated a simple technique to effectively 

separate metal ions easily by conjugating the tripeptide GGH to poly(NIPAAm) 

hydrogels. 

 

6.2 Results and Discussion 

The overall goal of this study is to demonstrate a facile and simple synthesis strategy to 

bring about conformational changes in the structure of the peptides embedded in 

poly(NIPAAm) hydrogels by inducing volume phase change in response to very specific 

environmental cues and to also act as a sensing platform. To this effect, poly(NIPAAm) 

hydrogels was copolymerized with 3-aminopropylmethaacrylamide hydrochloride(3-

APMA) which has a free amine end group. The amine functionalized hydrogels were 

then embedded with two different types of peptide sequences; GEGVP, a pentapeptide 

belonging to the elastin family of proteins and GGH, a tripeptide with an affinity towards 

heavy metals like Cu(II), Ni(II) and Zn were engineered by modifying the Merrifield solid 

phase peptide synthesis.  

 

Figure 6.1 shows the change in volume phase transition in poly(NIPAAm) hydrogels 

embedded with GEGVP for pH 2.23-10.95. The hybrid polymer hydrogel has an 
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isoelectric point of~7.0. The hydrogel is completely protonated at lower pH (2.23-5.87) 

which cause the hydrogels to remain swollen. As the pH approaches the isoelectric 

point(pH 6.57), we see that the gels undergo a volume phase transition collapsing to 

their hydrophobic state. At higher pH (8.95-10.92), the gels become deprotonated and 

this causes them to reswell again. In essence, the protonation and deprotonation of the 

hydrogels on either side of the isoelectric point enables sufficient charge distribution 

which prevents the hydrogels from collapsing. The hydrogels thus exhibit a phase 

transition in a narrow pH range of 6.57-7.67 close to the physiological pH of 7.4. 

 

 

 

 

 

 

 

 

Figure 6.1 Volume phase change in poly(NIPAAm) hydrogels conjugated with GEGVP  

for a pH range of 2.23-10.95.  
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Another strategy was to engineer poly(NIPAAm) hydrogels with GGH, a tripeptide with 

an affinity towards heavy metals.[ref] We chose to study the binding properties of 

copper. Nickel and zinc to GGH modified poly(NIPAAm) hydrogels. It has been well 

documented that GGH has metal chelating abilities towards Cu(II, Ni(II) and 

Zn(II).[249]We have demonstrated that poly(NIPAAm)-GGH constructs can be used to 

chelate Cu(II), Ni(II) and Zn and also bring about unique phase transitions  depending on 

the type of metal ion that has been chelated to the hydrogel. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Change in swelling behavior as a function of temperature for poly(NIPAAm), 

poly(NIPAAm-co-APMA(2%)) and poly(NIPAAm-co-APMA(2%))-GGH hydrogels. 
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Figure 6.2 shows the change in swelling behavior for poly(NIPAAm), poly(NIPAAm) 

copolymerized with 3-APMA and poly(NIPAAm-co-APMA(2%)) conjugated with GGH. 

We see that both poly(NIPAAm) and poly(NIPAAm-co-APMA(2%)) exhibit a change in 

swelling behavior for temperature 21 oC-42 oC.  

 

The addition of 2% of APMA makes poly(NIPAAm) much more hydrophilic and this 

causes the hydrogel to swell more and also shifts the transition temperature from 33°C 

for poly(NIPAAm) to 36°C for poly(NIPAAm-co-APMA(2%)) respectively. However, the 

addition of the tripeptide GGH prevents the collapse of the poly(NIPAAm-co-APMA(2%)) 

by changing the balance between the hydrophilic and  hydrophobic moieties of the 

peptide embedded  hydrogel. 
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Figure 6.3 Swelling behavior of poly(NIPAAm-co-APMA(2%)) solvated in water and 0.1M 

solutions of CuCl2, NiCl2, ZnCl2 and 0.2M NaCl. 
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GGH conjugated poly(NIPAAm-co-APMA(2%)) hydrogels solvated in 0.1M CuCl2 

undergoes deswelling as is the case with 0.1M solutions of NiCl2 and ZnCl2. GGH 

conjugated poly(NIPAAm)  can thus be used as a sensor to separate  heavy metals from 

solutions by increasing the temperature above the transition temperature. As these 

hydrogels do not aggregate in water but tend to deswell and aggregate in solutions of 

copper, nickel and zinc, providing an easy route to detect and remove metal complexed 

hydrogels from sample solutions.  
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The addition of 0.2M NaCl to poly(NIPAAm-co-APMA(2%))-GGH constructs brings about 

only a partial deswelling of the hydrogels. This suggests that the metal cations are 

mainly responsible in the deswelling process of the poly(NIPAAm) hydrogel. However, 

higher concentrations of salts also form an efficient way to aggregate hydrogels 

complexed with metal ions providing an alternative route to aggregate the hydrogels.  

 

6.3 Conclusions 

Poly(NIPAAm-co-APMA(2%)) hydrogels were used to embed GEGVP and GGH to form 

hybrid polymer constructs that respond to specific cues such as pH and chelate to metal 

ions. By carefully fabricating poly(NIPAAm) hydrogels with GEGVP, we have  an 

alternative route to make the polymers really smart by making the hydrogels to respond 

to a narrow range of pH. Poly(NIPAAm)-GGH constructs can be used to chelate heavy 

metal ions  and offers an easy way to separate them from sample solutions. This 

synthesis method thus offers a simple yet robust route to fabricate an effective sensor 

that responds to multiple environmental cues. 
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7 SUMMARY 

We present a simple photochemical technique for fabricating responsive polymer thin 

films using benzophenone chemistry. The method is simple and gives us control over 

cross-link density and film thickness. Poly(NIPAAm-MaBP) copolymer can be spin-

casted and cross-linked with UV light (365 nm). 

1. Permits opportunities for patterning. 

2. Wide range of potential substrates. 

 

Neutron reflection experiments have shown that poly(NIPAAm-MaBP) films undergo a 

reversible thickness-phase transition around 30°C. 

1. Above the collapse temperature, approximately 35% of water (D2O molecules) 

still trapped in the collapsed network with 3 D
2
O molecules per polymer segment. 

2. Varying only cross-link density, the volume transition can be discontinuous or 

exhibit a more continuous change. 

3. The binodal envelope for two-phase region in solutions of linear poly(NIPAAm) 

serves as a potential guide for understanding volume-phase transitions in 

networks and other confined geometries. 

4. Strong salting out salt like Na
2
SO

4
 induces a concentration dependent phase 

transition with around 15-20% D
2
O still trapped in the network. The presence of 

salts might form a secondary driving force for the expulsion of water from the 

collapsed polymer coatings. 
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5. Comparative studies with poly(DEA-co-MaBP) have shown that due to their 

greater hydrophobic surface area and also the absence of a dissociable proton in 

the amide moieties, there is only 10-15% D20 molecules in the collapsed 

poly(DEA-MaBP) coatings. 

 

ATR-FT-IR of poly(NIPAAm-MaBP) indicate structural changes manifested by the 

demixing process. 

1. The relative position of the amide peaks is determined by the amount of confined 

water trapped in the network and is largely independent of temperature. 

2. D
2
O –H

2
O exchange takes place even at 50°C indicating the presence of 

heterogeneous domains in the collapsed poly(NIPAAm) coatings. 

3. FTIR results indicate the presence of a direct interaction between the Hofmeister 

salts and the amide moieties of poly(NIPAAm-MaBP) polymers.  

 

Peptide modified poly(NIPAAm) hydrogels exhibit unique phase transition behavior.  

1. A simple and robust method to conjugate small peptide sequences using a 

modified Fmoc solid phase peptide synthesis technique into poly(NIPAAm) 

hydrogels is demonstrated. 

2. pH controlled phase transition seen in poly(NIPAAm)-GEGVP conjugated gels 

which aggregate in a very narrow pH range. 

3. Metal ion induced phase transition seen in poly(NIPAAm)-GGH conjugated gels 

which can be used to detect and separate heavy metal ions like copper, nickel 

and zinc from solution. 
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8 FUTURE DIRECTIONS 

Chapter 3 and chapter 4 discuss results on characterizing the volume phase transition of 

poly(NIPAAm) based polymer networks. Our data as shown that the demixing behavior 

can be predicted by changing only the cross-link density of the polymer networks and 

can be mapped using phase diagram of linear poly(NIPAAm) solutions. Similar 

experiments can be conducted on a slew of other responsive polymers like poly( 

diethyleacrylamide), poly(cyclopropylacrylamide), poly(vinylcaprolactam) among others. 

The inclusion of other hydrophilic and hydrophobic copolymers which provide additional 

functionalities is also an option that can be explored. As poly(NIPAAm) is not 

biodegradable, it presents a limitation in certain biological scenarios where using a more 

biocompatible comonomer might help to expand their biomedical applications  

 

In chapter 5, we have shown that certain additives like the Hofmeister series of salts 

have a profound effect on the demixing behavior of poly(NIPAAm) coatings. It is seen 

that salts have a direct interaction with the amide moieties of poly(NIPAAm) while very 

less interaction with the isopropyl groups. The addition of salts tend to form an additional 

driving force for water molecules to be driven out of the collapsed network Investigating 

the effect of salt on poly(NIPAAm) offers us a simple model to  better understand the 

complex nature of protein denaturation We have mainly investigated the role of 

monovalent anions in this study. It would be an interesting experiment to look at the 

effect of divalent and trivalent anions on the demixing behavior of polymers.  
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In chapter 6, we have demonstrated a simple method of creating smart hydrogels based 

on poly(NIPAAm) conjugated with specific peptide sequences using the Merrifield solid 

phase peptide synthesis. We have shown that by conjugating GEGVP, an elastin family 

of pentapeptide, the hydrogel can be made to respond to specific pH close to the 

physiological pH of 7.4.  

 

We have also shown that poly(NIPAAm) conjugated with GGH, a tripeptide can be used 

to chelates to heavy metal ions like copper, nickel and zinc bringing about their 

separation by aggregating the hydrogel.  We can expand this study by looking at other 

peptide sequences having different functionalities and also conjugating different 

combinations of the same peptides to fine tune their responsiveness. Another possibility 

is to fabricate peptide embedded polymer surfaces which would have huge potential in 

microfluidics and separation of specific bio-molecules both in vitro and in vivo. Peptide 

embedded polymer coatings can also be used to study cell adhesion as demonstrated 

by Okano and coworkers.[53, 54]  
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